Dairy Smart – One Year In

Lesley Irvine, TIA Dairy Centre

Dairy Smart, a three-year extension project funded by Dairy Australia, DairyTas and TIA, has just reached the end of the first year of activities. These activities have included 33 Feedbase and Nutrition Group meetings, 15 Business Group meetings, 7 Employee Group meetings, 4 Agribusiness Professional meetings as well as numerous field days, workshops and seminars. Below is a brief summary of the feedback provided from participants in the Dairy Smart project over the past 12 months and a look at what is ahead for the next 12 months with this project.

Feedbase and Nutrition Groups

The Feedbase and Nutrition Groups are similar to discussion groups of old but are conducted with a focus on improving pasture consumption and feed conversion efficiency. Farmers who were hosting a meeting for the Feedbase and Nutrition Groups had their prior season’s (2011-12) pasture consumption and feed conversion efficiency calculated (Table 1; Figure 1). On the day of the group meeting discussion included strategies on how to improve pasture consumption and/or feed conversion efficiency.

Table 1 Summary of the data provided by farmers participating in the Dairy Smart Feedbase and Nutrition Groups to calculate pasture consumption and feed conversion efficiency (2011-12)

<table>
<thead>
<tr>
<th>Average milking area (ha)</th>
<th>149 ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average herd size</td>
<td>390 cows</td>
</tr>
<tr>
<td>Average milk production (L)</td>
<td>2,042,418</td>
</tr>
<tr>
<td>Average fat production (kg)</td>
<td>89,694</td>
</tr>
<tr>
<td>Average fat production (%)</td>
<td>4.42</td>
</tr>
<tr>
<td>Average protein production (kg)</td>
<td>71,122</td>
</tr>
<tr>
<td>Average protein production (%)</td>
<td>3.45</td>
</tr>
<tr>
<td>Average pasture consumption (t DM/ha)</td>
<td>9.97</td>
</tr>
<tr>
<td>Average feed conversion efficiency (MS/kg DM fed)</td>
<td>78.07</td>
</tr>
</tbody>
</table>

Figure 1 Summary of the proportion of the milking cows diet that was fed as grazed pasture, concentrates, home grown silage or hay, purchased silage or hay or other feeds in the 2011-12 season

Over the next 12 months, the Feedbase and Nutrition Groups will continue to focus on improving pasture consumption and feed conversion efficiency. In addition there will also be more focus on feed quality and how to ensure that all the nutritional requirements of the milking herd and young stock are being met to optimise production and growth. TIA Dairy Centre researchers will also attend some meetings to provide updates on research projects, such as More Milk From Forages. As well as focussing on these topics, the groups all discuss other seasonally relevant or host farm specific issues. There is also a combined group tour planned for January. The Feedbase and Nutrition Groups are open to anyone. Dates of meetings are advertised in this newsletter, on the TIA website (www.tia.tas.edu.au/Dairy) and notices are posted and/or emailed to people on our mailing list. If you wish to be added to the mailing list for these notices, please contact me on email Lesley.Irvine@utas.edu.au or phone 0428 880 287.

Business Groups

The Dairy Smart Business Groups focus on the financial aspect of dairy farming. They meet on a host farm and will analyse a specific business decision that the host farmer is considering, such as, increasing herd size, changing calving pattern, or expanding irrigation. The members of each Business Group take part in the Tasmanian Benchmarking Program, a program that provides a report on the key physical and financial indicators for each business and these indicators also

continued on p. 2
form part of the discussion at the meetings. The Business Groups have been meeting for 12 months and at the end of this period, each group reported an increased confidence in some of their business management skills (Figure 2).

The Business Groups operated with a closed membership for the 12 month period, this was to encourage open discussion and sharing of information. The three groups that have already been formed (north east, central north and north west) are looking for new members plus there is going to be a new group formed in the Burnie-Devonport region. If you are interested in joining one of these groups, please contact Alexis Perez by email Alexis.Perez@utas.edu.au or phone 0418 876 089.

Over the next 12 months, the Business Groups will continue to analyse business decisions and discuss their benchmarking reports but this season they will also be focusing on key areas such as understanding dairy businesses, expansion in the Tasmanian dairy industry, people and training, collaboration and automatic milking systems. The group will continue meeting quarterly over the next 12 months to discuss a range of topics. For more information contact Elizabeth Mann by email Elizabeth.Mann@utas.edu.au or phone 0428 121 655.

Employee Groups

The Employee Groups are focussed on learning practical farm management skills such as how to:

- Use a plate meter
- Calculate cow requirements
- Determine ryegrass leaf stage
- Condition score a cow
- Complete a nutrient budget
- Determine soil type
- Set goals

There are currently two groups formed in Tasmania, one in the north west, and the other in the north east. A new group is planned to be established for southern, and central north dairy farmers and this will commence after the calving period. If you would like to join an Employee Group, contact Alison Hall on email A.F.Hall@utas.edu.au or phone 6430 4525.

Agribusiness Professional Group

The Agribusiness Professional Group has been formed to assist in developing networks, increase collaboration and provide training opportunities for people working in agribusiness associated with the dairy industry. Participants in the group include the banking industry, agronomists, accountants, milk supply officers, nutritionists, consultants and extension officers. Topics discussed in these meetings have included: understanding dairy businesses, expansion in the Tasmanian dairy industry, people and training, collaboration and automatic milking systems. The group will continue meeting quarterly over the next 12 months to discuss a range of topics. For more information contact Elizabeth Mann by email Elizabeth.Mann@utas.edu.au or phone 0428 121 655.

Field days, workshops and seminars

There are a whole range of topics that will be covered over the next 12-18 months either as field days, workshops or seminars. These include:

- Business skills
- Dairy cow nutrition
- Pasture management
- People
- Soil and fertiliser management
- Technology in the dairy industry

More information about these activities will be provided in future issues of Tassie Dairy News.

Input Prices

The latest Dairy Situation and Outlook Report update has just been released and is available on the Dairy Australia website (www.dairyaustralia.com.au). Some of the points from the “Inputs” section of the report are provided below.

Feed grains

- “Grain prices on global markets have remained at high levels for the past 12 months... With a record 2013 US corn crop looking increasingly likely, and healthy signs from European harvests nearing completion, prices are now under pressure.”
- “…With a healthy Australian crop looking likely but still far from realised, Melbourne-delivered feed wheat prices are only slightly (5%) lower than last year at $294/t, while barley prices – slower to rise in 2012 – remain 2% up on year ago levels at $268/t.”
- “Assuming favourable spring rainfall sets up a reasonable Australian crop, prices are likely to move lower in the coming months. The extent of this movement will depend on currency movements and the demand response stimulated by price falls.”

Hay

- “Fodder stocks have been extremely low for several months, with many farmers finding product difficult to source...”
- “With favourable rainfall on the east coast and positive price signals to growers, substantial rebuilding of fodder supplies is likely. However low carry-over stocks heading into the new season suggest that the risk of fodder supplies again becoming tight in 2014.”

Fertiliser

- “Global benchmark fertiliser prices have generally softened in the past 12 months, as slow buying sees inventories accumulate.”

Full details on inputs plus other topics such as: global economy, global demand and supply, Australian market, and exchange rates can be obtained by reading the Dairy 2013: Situation and Outlook September Update produced by Dairy Australia.
Cool Tool Tracks Genetic Progress

Australian Dairy Herd Improvement Scheme

A new tool enables dairy farmers to track the impact of breeding decisions and changes in their herd’s genetic merit over time.

Developed by the Australian Dairy Herd Improvement Scheme (ADHIS), the Genetic Progress Report also allows dairy farmers to compare their herd’s genetic merit with the average and top 10% of their breed in the country.

The report includes a summary of 10-year trends, including traits that have improved, remained stable and reduced in the herd. It also includes indicators of the herd’s genetic merit for profitability and its rank out of all Australian herd recorded herds for the breed.

Seven graphs track changes in the herd’s genetic changes since 2001 for profit, type, longevity, mastitis resistance, fertility, protein and fat.

Mrs Axford, ADHIS extension manager, said farmers were using the report to identify breeding areas that have performed well and those they wish to improve. Once they have identified the traits they want to improve through breeding, The Good Bulls Guide can be used to identify suitable sires.

“This is the first time Australian dairy farmers have had an independent, science-based assessment of genetic progress, drawing upon the herd’s own data. The report is generated from herd test data, so it is available to all farmers who herd record. There’s no need to supply extra information. Just request a Genetic Progress Report from your herd test centre,” she said.

John & Vicki Lillico, Tasmania

With 600-700 cows in herd recording, John Lillico (Hindlee), has plenty of data. He recently discovered the Genetic Progress Report makes that data work for him as a management tool.

Drawing upon his herd recording data, the Genetic Progress Report shows the impact of John’s breeding decisions and tracks his herd’s genetic improvement over time.

John, and his wife Vicki, dairy near Smithton in Tasmania’s north west, with help from two to three employees. About three quarters of the herd calves in spring, with the rest calving in autumn. Production averages at 9000-9500 L/cow/year from a predominantly pasture-based feeding system. Cows receive about 2½ tonnes of concentrates in the dairy each year.

Although John has always taken a strong interest in breeding and genetics, it has been in the context of operating a commercial dairy business.

The herd’s Genetic Progress Report shows it ranks in the top 10% for Australian Profit Ranking and well above the national average for type, longevity, fat and protein.

The results confirmed that John’s breeding strategy over the years has worked. He selects bulls based on high APR and type.

“We have always believed in the science behind the APR system. We’ve always selected from the top bulls for APR while paying close attention to their ABVs for type. And our report confirms our experience: that following the APR for selection delivers us the most profitable bulls,” he said.

John Lillico
“Daughter fertility has become a big focus for us because we don’t want to cross breed. I think genomics will help us identify young bulls that rate well for both profitability and daughter fertility. I will certainly be taking a keen interest in our future reports to see if we are making progress with fertility.”

Like many herds, Hindlee’s graph for genetic progress for mastitis resistance fluctuates from year to year.

“The mastitis graph made us step back and look at what might have contributed to the curve going up and down. I think it may be due to using some promising young bulls that didn’t have a lot of daughter data and a couple of them fared quite badly for mastitis resistance. That dates back to the pre-genomics years and I’m hoping genomics will help us avoid those sort of mistakes in the future,” he said.

John is keen to see the herd’s Genetic Progress Report each year.

“It’s a good tool to keep us focussed on profitability plus I will be keen to watch the herd’s genetic trends for fertility and mastitis in the coming years.”

Paul and Louise Sherar, South Gippsland

Gippsland dairyfarmer, Paul Sherar, was one of the first in the country to receive a Genetics Progress Report for his herd. While the results confirmed his selection decisions are taking the herd’s genetics in the right direction, he’s looking forward to using this report as a benchmark, and future reports to track progress.

Mr Sherar and his wife Louise share farm for Phillip Ould at Loch in South Gippsland. They are also one of the GippsDairy Focus Farms, a discussion group where they share the details of their business with neighbouring farmers, service providers and a mentor. While they currently milk 300 cows off 105ha, they have been expanding the herd by keeping all heifer calves. With 420 cows due to calve next season the couple need to access more land in the very near future.

Mr Sherar describes the herd as ‘liquorice allsorts’: it includes Jerseys, Holsteins, Brown Swiss and a variety of red breeds and crossbreds.

“Our focus is on profitable production. When we bought the herd in 2008 it was all Jerseys, averaging about 4000-4500L/cow. We started cross breeding for hybrid vigour,” Mr Sherar said.

“Average production is now almost 6000L/cow with the three year olds out-producing many of the older cows.”

The Sherars retained a portion of the herd as purebred Jerseys; and have two home-bred Jersey bulls to mop up the heifers after AI and to hand mate to some empty cows.

“Regardless of the breed or cross, our breeding objective is to increase profit, components and type using bulls with higher reliability,” he said.

As part of their role as focus farmers, ADHIS produced a Genetics Progress Report based on the Jerseys in the Sherar’s herd. The report shows 10-year trends in a herd’s genetic progress for key traits such as Australian Profit Ranking (APR), fat, protein, type, longevity, mastitis and fertility.

“We only bought the herd in 2008 so much of the trend lines in the report reflect the breeding decisions made by the former owners, but the report does go up to 2012 so the trends since 2008 reflect our decisions,” he said.

Mr Sherar said that overall the report confirmed that their breeding decisions were taking the herd’s genetics in the direction he wanted.

“We generally choose bulls from the Good Bulls Guide that rank in the top 10 for APR. We don’t buy expensive straws; there’s always plenty of bulls in the top 10 that are reasonably priced.”

The report shows that since 2001, the genetic merit of the Sherar’s Jersey herd has improved by 20kg protein, 8% longer survival and $220 more profit per cow per year.

Steady improvements in the herd’s genetic merit for APR have seen it climb from well below the Jersey breed average in 2001 to about breed average now. Fat, protein and longevity have followed similar paths.

The herd’s genetic merit for type has steadily increased and is well above breed average.

“Each of the key traits appears to be continuing to improve since we took over. The report confirms that using the APR as our main selection criteria is working.”

The APR accounts for traits which influence profit such as production, components, fertility, cell count, temperament, milking speed and liveweight.

“In the future I’ll be very keen to keep a close eye on these trends. If any trait drops down, it will be an alert to re-think our selection decisions.”

Mr Sherar has recently sent hair samples from two home-grown bulls for genomic testing.

“The results will give us an idea of how our home-grown bulls compare with bulls in the Good Bulls Guide. If they are not up to scratch, they’ll be going!” he said.

Genetic Progress Reports are available through your local herd test centre. If you’d like to learn more about what your herd’s Genetic Progress Report means, ADHIS is running workshops and attending field days across dairying areas. For details on the next event near you, or to request an event for your group, contact Michelle Axford, ADHIS Extension and Education Manager, ph 0427 573 330 or email maxford@adhis.com.au.
Predicting The Response Of Pasture to Nitrogen Fertiliser

Alison Hall, TIA Dairy Centre

Predicting or knowing what sort of response you can expect from applying nitrogen fertilisers to your pasture is challenging, particularly when many environmental and climatic conditions can impact on how pasture responds to nitrogen and nitrogen use efficiency.

There are four factors that should be considered in evaluating the economic value of a nitrogen fertiliser application. These include:

1. Cost of the nitrogen fertiliser ($/kg of N).
2. Pasture responses to nitrogen fertiliser (kg of dry matter (DM)/kg N applied).
3. Efficiency of pasture utilisation (by harvesting or grazing) and cost ($/tonne DM consumed).

Using nitrogen to produce feed that can be grazed directly rather than conserved is often the most cost effective option.

Traditionally, nitrogen fertilisers have been strategically applied at times when nitrogen fixation is depressed, such as in autumn, winter and early spring, or when there is low clover content in pastures. However, the use of nitrogen fertilisers to boost silage and hay yields has increased in recent years. With this increase in nitrogen fertiliser use, and increased focus on the associated environmental impact, being able to predict the response of your pasture throughout the year to nitrogen has become increasingly important.

The TIA Dairy Centre has developed a tool to do this, called the ‘Predictive Nitrogen Response Rate Calculator’. This tool enables you to predict your nitrogen fertiliser response rate based on your soil temperature, soil moisture content and fertiliser application rate.

The tool allows users to alter soil temperature, soil moisture content, total inorganic nitrogen levels, urea price ($/tonne) and forage price ($/tonne).

One you have entered this information, and selected ‘calculate’, the tool will give you estimations based on the values you have entered. These include:

- Estimated economical fertiliser application rate (kg N/ha)
- Estimated response rate (kg DM/kg N applied)
- Estimated cost per kg DM ($/kg DM)

The tool will also provide you with a graph that shows the estimated additional pasture growth due to nitrogen application (kg DM/ha) corresponding to various nitrogen application rates (kg N/ha/day).

To enter your individual information, you can drag the bars to adjust each level, or enter a value in the boxes provided. As you alter these figures, the graph on the right hand side will adjust in response to the values you have entered.

Once you have entered both a urea price and forage price, you then need to click on ‘calculate’ to generate the estimated economical application rate, response rate and cost per kg/DM. You can then use this information to assist you in deciding how much nitrogen fertiliser to apply, and the estimated response rate you will receive and at what estimated cost. In addition, the graph provided can illustrate at what levels of nitrogen application rate you may expect to see diminishing returns, or when you might stop seeing any additional pasture grown in response to extra nitrogen applied.

This ‘Predictive Nitrogen Fertiliser Response Rate Calculator’ has been developed in Microsoft Excel and can be found on the TIA Dairy Centre website, at http://www.tia.tas.edu.au/centres/dairy-centre/publications-and-tools/tools.

There are also some instructions located at the same website address about using the tool. If you experience any difficulties with using this tool, please contact one of the TIA Dairy Centre staff by emailing TiaAdmin.CCC@utas.edu.au.

For further information about the use of nitrogen fertilisers, visit the TIA website at www.tia.tas.edu.au, or the Dairy Australia website which contains many fact sheets and information on nitrogen use, at www.dairyaustralia.com.au.
In a typical year on a Tasmanian dairy farm, more than 70% of pasture growth occurs during spring. Pasture that is surplus to the immediate requirements of the herd is conserved to assist in filling feed gaps at other times in the year. On any farm, the amount of pasture conserved will vary from year to year depending on the pasture growth rate and the length of the growing season. While there are many factors that impact on the pasture growth rate, temperature and moisture are critical both in this and the length of the growing season.

There is evidence that global temperatures and associated atmospheric carbon dioxide concentrations are slowly increasing, however, what do future rainfall patterns look like? Will we experience lasting changes in rainfall patterns? In the future will we grow as much pasture in spring as we have in the past? Will we need to consider managing larger feed deficits in the future?

TIA Dairy Centre researchers Karen Christie and Richard Rawnsley have been using predictive climate data for the future from the ‘Climate Futures for Tasmania’ project to explore a range of questions, including, whether the average length of our spring pasture growth period becomes longer or shorter in the future. We selected one of the worse case scenarios proposed for Tasmania’s future climate (A2 emissions scenario) and applied it to six general circulation models (GCMs; CSIRO3.5, ECHAM, GFDL2.0, GFDL2.1, MIROC and UKHad). GCMs give an idea of the likely variation in climatic conditions we might experience. The six GCMs used in this study have been shown to best reflect the future climate outcomes most likely for Australia. However, while all the models predict an increase in daily temperatures, there are variations between the GCMs in predicted rainfall patterns, with some models predicting an increase in rainfall and others a decline.

We used the biophysical model DairyMod to simulate a typical Tasmanian dairy farm system in five regions of Tasmania (represented by; Cressy, Flowerdale, Ouse, Ringarooma and Woolnorth). The modelled farms were rain-fed (so that irrigation didn’t confuse the results), growing perennial ryegrass pastures on clay-loam soils. We deliberately didn’t select the dominant soil type in each region but instead wanted to keep as many of the farms’ aspects the same across the regions so the results become reflective of the change to temperatures and rainfall patterns only.

Monthly pasture growth rates were estimated by DairyMod for years 1971 to 2090 for each of the six GCMs. Within each GCM, we then calculated the 30-year average pasture growth rate for each month using the baseline period of years 1971 to 2000. We then compared the 30-year average monthly growth rates with their corresponding month for each year between 1971 and 2090.

We define a long spring season as when monthly growth rates in November and December for any particular year is greater than the 30-year baseline average monthly growth rate for November and December. We then counted how many years in each of four 30-year periods met this long spring season definition for each GCM and region. These periods were defined as the baseline period (years 1971 to 2000), our current period (years 2001 to 2030) and two future periods (years 2031 to 2060 and years 2061 to 2090).

As an example, using the CSIRO GCM prediction, DairyMod estimated the 30-year average monthly growth rates obtained for the baseline years were 44 and 26 kg DM/day for November and December. We defined a long spring season when the monthly growth rates for November and December were greater than 44 and 26 kg DM/day, then this would represent a long spring as both months were greater than their corresponding monthly baseline period average. However, if one or both month’s daily growth rate was lower than the baseline period monthly average, than the year 2039 would not be considered as having a long spring.

Conversely, we also examined if the future climate might result in shorter springs. We defined a short spring season when the monthly growth rates in October and November for any particular year was lower than the 30-year baseline average monthly growth rate for October and November.

While there were some differences between the six GCMs in regards to the frequency (number of years out of 30) of either long or short springs, for simplification in this article, we have presented the average of the six GCMs for each time period and region. At all five regions, the frequency of long springs, as defined in this analysis, is between 6 and 10 years out of the 30 year total during the baseline period (Figure 1). At Flowerdale, Ringarooma and Woolnorth, DairyMod predicted that there is likely to be little change in the frequency of long springs in the future (Figure 1). The biggest decline in the frequency of long springs was at Ouse, possibly due to increased daily temperatures during November and December reducing available soil moisture and therefore lowering daily growth rates (Figure 1).

At all five regions, the frequency of short springs, as defined in this study, was about 8 years out of 30 at Cressy and between 4 and 6 years out of 30 at the other four regions, during the baseline period of...
years (Figure 1). What is also positive to see is that the frequency of short springs is likely to decline dramatically at Flowerdale, Ringarooma and Woolnorth to almost become non-existent. While the decline in the frequency of short springs is less prominent at Cressy and Ouse, the GCMs are still predicting a decline in the frequency of short springs (Figure 1).

So what does this all mean and how can farmers prepare for the possible changes coming? The reduction in short springs indicates that warming temperatures and increased atmospheric carbon dioxide concentrations will result in increased pasture growth rates for October and November. Coupled with little variation in the frequency of long springs, farmers in most regions of Tasmania should be able to grow more pasture in spring which may need careful management in order to retain quality. Management changes might include earlier calving or increased stocking rates that can take advantage of any increase in the length of the main pasture growing season.

For more information on the Climate Futures for Tasmania project, visit http://www.dpac.tas.gov.au/divisions/climatechange/adapting/climate_futures.

Genomics Tops Dairy Talent

Australian Dairy Herd Improvement Scheme

Genomic bulls dominate the top bulls in the latest list of Australian Breeding Values (ABVs) released by the Australian Dairy Herd Improvement Scheme (ADHIS) in August.

Michelle Axford from ADHIS said that more than half the Holstein bulls in the latest Good Bulls Guide (which lists the top dairy bulls) were young genomic bulls.

“Genomic – or DNA – testing is having a major impact on dairy artificial breeding in the two years since the technology was introduced in Australia.”

“Three years ago, there were no genomic bulls in the Good Bulls Guide. Two years ago less than 25% of the Holstein bulls in the Guide were young genomic bulls. That represents a rapid uptake of the technology,” Mrs Axford said.

She said the rapid uptake was because genomic testing could be done when an animal was any age, so breeding values could be estimated for young cows and bulls, long before performance data was available (or daughter performance data in the case of bulls).

“This means bulls can be used with confidence from a much younger age, and that will contribute to a faster rate of genetic gain in Australia’s dairy herds.”

The Good Bulls Guide includes 22 proven bulls that have returned to service having previously been available on the market as young genomic bulls.

“The farmers who used these bulls as young genomic bulls will now be joining their heifers. That’s a full two years earlier than before this technology was available,” she said.

Genomic testing is also useful for older animals, even proven bulls with daughter performance data.

“Bulls proven overseas without any Australian daughters have more reliable breeding values with the addition of genomics. The reliability of Australian proven bulls improves, particularly for hard to measure traits such as fertility,” she said.

“Seventy one per cent of the Holstein bulls listed in the guide have been genotyped, which illustrates how valuable the information is to the artificial breeding industry.”

The Good Bulls Guide is posted to dairy farmers or can be downloaded from www.adhis.com.au.

For more information contact Michelle Axford at ADHIS ph (03) 8621-4240 or email maxford@adhis.com.au.

The latest Good Bulls Guide is now available

Quote: Before you are a leader, success is all about growing yourself. When you become a leader, success is all about growing others. - Jack Welch
Regional Advisory Groups – Farmers Wanted
DairyTas Board is still seeking interested dairy farmers to be part of our new Regional Dairy Advisory Groups in Tasmania that will operate in each of the main dairy regions and will provide communication, input and advice to the DairyTas Board on industry priorities and programs for dairy farmers. This mainly covers research, development and extension programs for the industry in Tasmania.

Interested farmers should contact Mark Smith at DairyTas on 6432 2233 now with the first meetings planned in November.

Coming up for DairyTas
The DairyTas Annual Meeting will be on Thursday November 14th in Dairy Plains. It will feature information on the new employment resource (ESKi), dairy nutrient management project in the region and Genomics developments with the Dairy CRC and ADHIS with a visit to Nigel and Rachel Brocks farm.

Overseas employment interest?
DairyTas is facilitating a visit by Gary Tolmatsky from Oztec (Australian immigration services focusing on Ukrainian workers) in Smithton on Thursday September 12th for interested dairy farmers. From 12 noon to 2:00 pm at the Agritas Training Centre in Smithton. RSVP essential to DairyTas please.

DairyTas Board Farmer Director Positions
DairyTas Board has vacancies for 2 farmer Director positions. These positions are for 2 three year terms and involve attending 6 to 8 meetings per year plus other project activities and events that occur from time to time. Daily sitting fees and travel allowances are paid. More details are available from Mark Smith at DairyTas.

Into Dairy - Sustainable Dairy Development
A reminder that assistance programs for both existing dairy farmers and landowners looking to convert property to dairy are open.

The Planning for Conversion Program has received its first dairy conversion report with work continuing for other approved applicants. The report revealed a positive outlook for the applicant’s property.

Dairy farmers seeking to expand milk production are encouraged to consider the Planning for Growth Program which provides assistance with the costs of employing specialists to advise on elements of the expansion plan.

For further information please contact Steven at DairyTas on 03 6432 2233 or email s.jarman@dairytas.net.au.

Fert$mart Program
Dairy Australia has just launched the Dairy Industry’s new Fert$mart website http://fertsmart.dairyingfortomorrow.com.au. The Fert$mart site has a wealth of information on soil and fertiliser management specific to Australian dairy farms including Tasmania. It is well worth a look.

Dairy Industry Events Calendar – September 2013

<table>
<thead>
<tr>
<th>September and October 2013</th>
<th>November 2013 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 23: Camembert in the Classroom Presentation Day, Ulverstone.</td>
<td>November 1: Cows Create Careers Presentation Day, Devonport. (details TBC)</td>
</tr>
<tr>
<td>September 25: DairyTas Board mtg, Burnie</td>
<td>November 14: DairyTas AGM and Farmer Session with launch of the Employment Starter Kit</td>
</tr>
<tr>
<td>October 1: TIA – Devonport Dairy Smart Feedbase and Nutrition Group, on R&S Poke's sharefarming for Frampton Family, 9 Allison Rd, North Motton. 11:00 a.m. to 2:00 p.m.</td>
<td>November 15: Service Providers Breakfast, Dairy Australia, Burnie (details TBC)</td>
</tr>
<tr>
<td>October 9: TIA – NW Dairy Smart Feedbase & Nutrition Group</td>
<td>November 27: TIA – Dairy Smart Agribusiness Professional Breakfast</td>
</tr>
<tr>
<td>October 10: TIA – Marrawah Dairy Smart Feedbase & Nutrition Group</td>
<td>November 29, Dairy Australia AGM, Flemington, Vic</td>
</tr>
<tr>
<td>October 16: TIA – Central North Dairy Smart Feedbase & Nutrition Group</td>
<td>December 4: TIA Dairy Centre Open Day, Elliott Research Farm</td>
</tr>
<tr>
<td>October 28: Cows Create Careers Presentation Day, South. (details TBC)</td>
<td></td>
</tr>
<tr>
<td>October 29: Picasso Cows Presentation Day, South. (details TBC)</td>
<td></td>
</tr>
<tr>
<td>October 30: Cows Create Careers Presentation Day, North. (details TBC)</td>
<td></td>
</tr>
<tr>
<td>October 31: Cows Create Careers Presentation Day, North West. (details TBC)</td>
<td></td>
</tr>
</tbody>
</table>

DairyTas Board - 6432 2233
TasTAFE - 6434 5836

Tassie Dairy News is provided free to all Tasmanian dairy farmers and is funded by Dairy Australia. For more information, please contact a TIA Dairy Centre adviser, phone 6430 4953 or email tas.dairynews@utas.edu.au. Electronic copies of this newsletter are available at www.tia.tas.edu.au.

Disclaimer: This publication has been prepared for the general information of dairy farmers in Tasmania. TIA and the University of Tasmania do not accept any liability for damage caused by, or economic loss arising from reliance upon information or material contained in this publication.