Managing blueberry rust in a cool climate

Blueberry rust in Tasmania is caused by the fungus *Thekopsora minima*. The disease is currently limited to 3 sites in Tasmania (September, 2017). Preventing blueberry rust infection is a key to limiting the spread of this disease. The key steps in preventing blueberry rust infection include good farm biosecurity and applying crop management practices that reduce the risk of infection.

Where does blueberry rust come from?

Blueberry rust can exist exclusively on blueberries from season to season, especially if blueberries retain their leaves over winter. Alternative hosts include members of the rhododendron family and *Gaylussacia* spp. (Huckleberry). Blueberry rust can also complete its lifecycle on the alternate host (*Tsuga* sp.) particularly in cool climates. *Tsuga* are a group of conifers common in the Northern United States and Canada, but less common in Australia. Infected *Tsuga* needles can go on to reinfect blueberries in the spring. It is not known whether the rust occurs on any alternate or alternative hosts in Tasmania so crop management is based around prevention of infection from spores produced on blueberry plants.

How is blueberry rust spread?

The disease is spread with spores carried by wind from infected plants, directly by people wearing contaminated clothing, equipment that has been in contact with infected blueberries or by introducing infected plants to the orchard.

Key Points

- **Blueberry rust is spread** by wind, carried on people, plants and equipment.
- **Prepare a farm biosecurity plan** to manage the movement of people, plants and equipment both onto and within your orchard.
- Become familiar with blueberry rust symptoms and **monitor your crop regularly**.
- Blueberry rust **spore production and infection** is favoured by humid conditions, temperatures between 19 and 25°C and may be triggered by rain.
- **Reduce humidity** within the orchard by pruning to create an open canopy, good alleyway and edge management.
- **Apply crop protectants** using a suitable product, timing and application technique to prevent infection.
- **Protect young leaves** as these are most susceptible to blueberry rust.
Blueberry rust symptoms

- Blueberry rust first appears as small yellow leaf spots on the upper surface of young leaves. A disease progresses these areas turn rust brown coloured and can be surrounded by a yellow halo. (Figure 1)
- Yellow-orange powdery rust pustules develop on the underside of leaves (Figure 2)
- The telial stage (not yet observed in Tasmania) may occur at the end of the growing season and appears as dark coloured crusts on undersides of leaves

Images courtesy Tasmanian DPIPWE & NSW DPI

How can I prevent blueberry rust infection?

The first step to prevention is to have a good farm biosecurity plan. Resources: [Farm biosecurity](#) and [National blueberry biosecurity plan](#). Blueberry Orchard Hygiene Guidelines published by the Tasmanian Department of Primary Industries (DPIPWE) provides a good starting point. Crop management practices that help prevent blueberry rust infection can include cultural, chemical and biological practices.

Cultural management

High humidity and leaf wetness favour blueberry rust infection. **Pruning to create an open canopy can help leaves dry faster and reduce the humidity** within the bush. Whilst good shelter is beneficial for blueberry productivity, some airflow through the canopy can help prevent disease. Keeping the inter-row alleyways mown and free of tall weeds is good practice for reducing humidity in the blueberry canopy. High density plantings may favour disease development.

Prevention is better than cure

Preventing rust with crop protectants relies on good **timing**, using an **effective product** and thorough **coverage** by good application technique. Once blueberry rust symptoms are obvious, management is more difficult due to the rapid production of large numbers of spores.

DISCLAIMER: While the Tasmanian Institute of Agriculture (TIA) takes reasonable steps to ensure that the information on its fact sheets is correct, it provides no warranty or guarantee that information is accurate, complete or up-to-date. TIA will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information contained in this publication. No person should act on the basis of the contents of this publication without first obtaining specific, independent, professional advice. TIA and contributors to this fact sheet may identify products by proprietary or trade names to help readers identify particular types of products. We do not endorse or recommend the products of any manufacturer referred to. Other products may perform as well or better than the products of the manufacturer referred to.

Michele Buntain

Tasmanian Institute of Agriculture
michele.buntain@utas.edu.au | +61 3 6226 6353

Published: September, 2017 CRICOS Provider Code 00586B