CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTOR’S REPORT</td>
<td>2</td>
</tr>
<tr>
<td>PROFILE AND RESEARCH MODEL</td>
<td>6</td>
</tr>
<tr>
<td>STAFF AND MANAGEMENT</td>
<td>10</td>
</tr>
<tr>
<td>ORE DEPOSITS: CHARACTERISATION AND CONTEXT MODULE</td>
<td>16</td>
</tr>
<tr>
<td>GEOMETALLURGY MODULE</td>
<td>40</td>
</tr>
<tr>
<td>ENABLING TECHNOLOGIES MODULE</td>
<td>46</td>
</tr>
<tr>
<td>TRAINING MODULE</td>
<td>56</td>
</tr>
<tr>
<td>OUTREACH</td>
<td>72</td>
</tr>
<tr>
<td>INDUSTRY LINKS AND RESEARCH COLLABORATIONS</td>
<td>74</td>
</tr>
<tr>
<td>TECHNOLOGY TRANSFER</td>
<td>76</td>
</tr>
<tr>
<td>PERFORMANCE INDICATORS</td>
<td>78</td>
</tr>
<tr>
<td>FINANCES</td>
<td>80</td>
</tr>
<tr>
<td>2014 CODES’ PUBLICATIONS</td>
<td>84</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>98</td>
</tr>
</tbody>
</table>

PLEASE NOTE: IN VARIOUS PLACES THROUGHOUT THIS PUBLICATION, IMAGERY HAS BEEN USED FOR GRAPHIC PURPOSES ONLY. CAPTIONS HAVE NOT BEEN PROVIDED IN THESE INSTANCES.
This has been a very special year in the history of CODES, during which, for the first time since our inception in 1989, we operated without the support of funding as an Australian Research Council (ARC) Centre. Despite this significant loss of income, I am pleased to report that life not only went on, but we had one of the most successful years on record.

THE HUB

The highlight of the year was undoubtedly the announcement in June that CODES, together with its industry partners, had been awarded one of the ARC’s Industrial Transformation Research Hubs. The ARC has allocated nearly $4 million over the five-year life of the Hub, with a further $8 million of matching funds, in cash and in-kind, being pledged by participants within the minerals industry. While a lot more work still needs to be done to reach the level of funding we had as a Centre of Excellence, this announcement is a major step forward, and testament that CODES is held in high regard by both the ARC and our partners in industry. The new Hub is entitled Transforming the Mining Value Chain (TMVC) and is expected to come on stream mid-2015. See pages 8–9 for further details.

SEG-CODES 2015 CONFERENCE

Another major highlight was when the Society of Economic Geologists (SEG) confirmed that it had appointed CODES as its partner for its annual conference and exhibition in 2015. The event is the biggest conference in the world for economic geology, and is expected to attract at least 600 national and international delegates. The SEG-CODES Conference will be held at Wrest Point from 27 to 30 September, 2015. This is the first time that this major international event has been held in Tasmania, and as co-hosts it provides an exceptional opportunity to showcase our research.

RESEARCH MODULES

Key objectives when establishing the new research modules were to ensure that CODES retained its core research strengths, while establishing a platform that was conducive to growth and development. I believe that this has been achieved. If you look through this report, you will see that much of the research from the Programs has been continued and developed in the Modules, with a number of new projects commencing, all related to our core strengths.

Two major projects came to an end during the year.

Two major projects came to an end during the year.

The team from the AMIRA P1060 project (Enhanced geochemical targeting in magmatic-hydrothermal systems) held its final meeting in June. This initiative had the support of 20 industry sponsors, making it the largest exploration-based research project in AMIRA’s history. This important research has been ongoing for a number of years under various project titles. It is expected that it will be developed even further in 2015 through the advent of AMIRA P1153 (Applying the explorers’ toolbox to discover porphyry and epithermal Cu, Au and Mo deposits).

Ore Deposits of SE Asia was completed via a final project meeting in November. This extensive project greatly enhanced the geological knowledge of mainland SE Asia,
and more recently of Sumatra, and did a considerable amount to extend our research footprint within Asia. Negotiations are in progress with sponsors to extend this research via a new initiative to investigate the tectonics and origin of copper-gold mineralisation of the Western Myanmar-Sumatra Terrane.

It has been a relatively quiet year for the Geometallurgy Module, as it transitions to life after the conclusion of the highly successful GeM³ project. Nevertheless, significant technology transfer from GeM³ continued throughout the year, and this will pick up pace in late 2015 as confidentiality agreements expire. CODES has been named as an Essential Research Participant in the CRC ORE II bid, which, if approved by Government, will considerably increase our collaboration with the Centre in this field. Geometallurgy is also included as a dedicated Theme in the TMVC Hub, which will further add to the activities in the year ahead.

The Enabling Technologies Module has retained all the key elements of the research from the Technology Program, which have been augmented by new projects in areas such as big data knowledge discovery.

Technology is the backbone of the research activities within all our modules and we are proud of the innovations that have come from this area over the years. In 2014, the team continued to excel with novel work in a number of areas. An example of this is the development of innovative techniques for manufacturing a new calibration standard for sulfide analysis characterised by better homogeneity of selenium, titanium, gold, and platinum. They also developed a new technique for incorporating spatial context into data driven lithology prediction. This innovative technique enables disparate geological parameters relating to areas such as geochemical assay data, geophysical signals, and field observations to be integrated, allowing lithology prediction to be conducted in a holistic manner.

TRAINING

One of the cornerstones of our success has always been the strength of our postgraduate training programs. They play a crucial role in supplying world class geoscientists to industry, and are integral to our research activities. In recognition of the importance that we place on this aspect of our operations, we have created a module within our new research structure that is specifically dedicated to training. It has been a very good year for this new Module, which included a number of highlights.

Despite losing MTEC funding a couple of years ago, the Master of Economic Geology program has continued to go from strength to strength. In 2014, it had 52 people enrolled at UTAS, which is the highest number in the history of the program. It also had strong attendances at all three of its short courses held throughout the year.

The Higher Degree by Research (HDR) Program is known for the high number of students it attracts from all parts of the globe. While that trend continued in 2014, with 37 international students from 18 countries, it was also pleasing to note that the cohort included seven Australian students. This was a record for the program, although the figure could partly be a reflection of the current downturn in the minerals industry.

Re- and up-skilling training for industry professionals is another important part of the Training Module. CODES has increased its focus on this important service in recent years, and this trend continued in 2014 with the inaugural running of the Advances in Geo-logging course, held in collaboration with GHD and Mineral Resources Tasmania (MRT). The course was held at MRT’s facilities in Hobart, which includes an extensive drill-core library. This was just one of a number of collaborations that strengthened our ties with MRT, which we plan to foster further in 2015.

PUBLICATIONS AND INDUSTRY REPORTS

While the number of publications was down on the record high of the previous year, the output matched the average achieved during our tenure as a funded Centre of Excellence, which was consistently above the ARC target. A highlight of the output was the Special Issue of Economic Geology devoted to Alkaline Porphyry Copper-Gold and Epithermal Gold deposits. The publication includes contributions from 15 authors affiliated to CODES. Professor David Cooke was guest editor of the publication, along with Dr Thomas Bissig from UBC. CODES remains the leading university-based group to publish in Economic Geology, the world’s leading journal in this field of research.

Research from the SE Asia project was featured in the print version of a special issue of Gondwana Research entitled Tectonics and Metallogeny of Mainland SE Asia. The publication included 12 authors affiliated to CODES. Professor Khin Zaw was one of the guest editors.
In addition to our publications, CODES produces a substantial number of reports to industry each year, which are vital to our sponsors in terms of technology transfer. CODES has consistently exceeded the performance indicator of 80 for this output, and that trend continued in 2014.

AWARDS AND ACCOLADES

It has been a particularly prolific year in terms of awards and accolades. Professor Leonid Danyushevsky was elected as a Fellow of the Mineralogical Society of America (MSA). Less than 3% of past Fellows have been from Australia, and Leonid is the first Tasmanian to receive the honour.

One of our brightest young researchers, Rebecca Carey, received the UTAS Vice Chancellor’s Award for Research Excellence. Rebecca also won a National Science Foundation Research Grant (USA) that will fund a research cruise in 2015 to study the aftermath of the 2012 explosive submarine eruption of Havre volcano.

It was also a good year for our students. Sam Holt received the GSA’s David Grove’s Medal for the ‘best paper in the Australian Journal of Sciences by a young Australian’. Stephanie Sykora achieved first place in the student poster presentation category at the SEG’s annual conference in Keystone, Colorado. Martin Gal was awarded an American Geophysical Union (AGU) ‘Outstanding Student Paper Award’ at the 2014 AGU Fall Meeting in San Francisco. A number of students also received various grants towards their research.

In addition to the individual awards, a team led by David Cooke and I won the Measurement in Action category at the prestigious UK-based Institute of Engineering Technology’s Innovation Awards in London. The award was for research related to the AMIRA P765/765A/1060 projects.

RETIREMENTS

Two more of CODES’ most valued and long serving staff members retired during the year. Professional staff member Peter Cornish left us after many years of service for the University, dating back to 1972. In recent years, Peter was our Laboratory Manager, providing exceptional and wide ranging support for the day-to-day activities of CODES and Earth Sciences.

One of our finest researchers, Jocelyn McPhie, retired at the end of the year. Jocelyn joined CODES soon after its inception and has been one of the main drivers behind our success. She has done a sterling job in various roles for CODES, including Graduate Research Co-ordinator, Program Leader and more recently Co-Leader of the Training Module. She was also Head of the Discipline of Earth Sciences. She is one of the world’s most highly respected volcanologists, and her co-authored book, Volcanic Textures, has been one of our most sought-after publications for many years.

Both Peter and Jocelyn will be sorely missed, but I am pleased to say that they haven’t been lost to us entirely, as both have been retained by UTAS in honorary capacities.

2015 AND BEYOND

I would like to thank all our stakeholders, particularly those in the minerals industry who continued to support us despite the current difficult operating conditions. I would also like to thank all the academic, technical and professional staff, as well as the students, for all their hard work and dedication.

There is a lot to look forward to in the year ahead, including the start of the new Hub, the AMIRA P1153 project, a potential CRC ORE II, and last, but not least, the SEG 2015 Conference co-hosted by CODES. I look forward to seeing many of you there.

Professor J Bruce Gemmell, Director and Chief Operations Officer

STATISTICS AT A GLANCE 2014

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Research Staff</td>
<td>45</td>
</tr>
<tr>
<td>Postgraduate Students</td>
<td>127</td>
</tr>
<tr>
<td>Major Research Projects</td>
<td>36</td>
</tr>
<tr>
<td>Countries Involved</td>
<td>31</td>
</tr>
<tr>
<td>Publications in Refereed Journals</td>
<td>55</td>
</tr>
<tr>
<td>Research Reports to Industry</td>
<td>82</td>
</tr>
<tr>
<td>Workshops and Short Courses:</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>16</td>
</tr>
<tr>
<td>Countries</td>
<td>6</td>
</tr>
<tr>
<td>Attendees</td>
<td>918</td>
</tr>
<tr>
<td>Funding:</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>$1.77 million</td>
</tr>
<tr>
<td>UTAS</td>
<td>$2.42 million</td>
</tr>
<tr>
<td>Worldwide Collaborations:</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>54</td>
</tr>
<tr>
<td>Institutes and Universities</td>
<td>81</td>
</tr>
</tbody>
</table>
VISION
To be the premier international research centre in ore deposit geology.

MISSION
Significantly advance collaborative and innovative ore deposit research for Australian and international researchers and the minerals industry.

GOALS
• Undertake and publish high-quality research.
• Lead the global minerals industry in research on the exploration and recovery of new mineral resources.
• Equip the Australian minerals industry with world-class graduates.
• Communicate the Centre’s research to the wider research, industry and general communities.
CODES – A BRIEF OVERVIEW

CODES was formed in 1989, and has been the Australian Research Council (ARC) Centre of Excellence in Ore Deposits since 2005. Based at the University of Tasmania, the Centre has grown substantially over the years and is now widely regarded as a global leader in ore deposit research and postgraduate training. It is home to 45 highly qualified research staff and 127 postgraduate students, further cementing its position as the largest university-based team of ore deposit researchers in the world.

Highly productive worldwide collaborations have been developed with over 50 industry companies, plus a host of joint research initiatives with 81 institutions and universities – 25 in Australia and 56 overseas. It currently has 36 major research projects spanning 31 countries, and is the leading academic group to publish in Economic Geology. In the past year, it maintained its reputation for delivering excellence in technology transfer by producing 82 reports to industry and conducting 16 workshops and short courses in six countries.

In mid-2014, it was announced that CODES, together with a group of its research partners, had been awarded one of the ARC’s Industrial Transformation Research Hubs, entitled Transforming the Mining Value Chain. The Hub is covered in more detail later in this section.

THE NEW MODULES

- **Ore Deposits: Characterisation and Context**, led by Dr Garry Davidson, provides end-users with process-based models for the formation of high value metalliferous ore deposits and a framework to develop innovative new tools for determining the most prospective regions for exploration (fertility), and for targeting buried ore deposits (vectoring).

- **Geometallurgy**, led by Dr Julie Hunt, builds on the success of the AMIRA P843/A GeMIII projects and the collaborative involvement with CRC ORE. This module aims to transform how explorers and miners plan and predict mining and environmental activities, by providing new tools to guide these activities from the initial discovery stage, rather than during feasibility assessment.

- **Enabling Technologies**, led by Professor Leonid Danyushevsky, continues the work carried out under the old Technology Program by producing innovative analytical and computational tools, and facilitating technology transfer to the minerals exploration and geoanalytical industries.

RESEARCH FRAMEWORK

As foreshadowed in last year’s annual report, CODES introduced a new four module research model early in 2014, which replaced the five Programs in place previously.

Key objectives in developing this model were to ensure all the well established and valued research capabilities were maintained, while enhancing the structure to better reflect the Centre’s strengths. It is believed that this model also better positions the Centre to adapt to the evolving needs of the minerals industry and other stakeholder groups.

The new integrated research modules provide a step-change in exploration techniques for metal discovery, new practices for sustainable mining, a steady supply of world class geoscience graduates, as well as creating a platform to meet the training and up-skilling needs of the minerals industry.
• **Training**, jointly led by Professor Jocelyn McPhie (graduate research) and Dr Robert Scott (Master of Economic Geology Program), builds on CODES’ ability to produce highly-skilled Honours, Masters and PhD graduates, and provide professional development short courses and workshops for re- and up-skilling of the minerals industry workforce. Associate Professor Anya Reading will be taking over from Professor McPhie as joint leader early in 2015.

While some of the projects under the Programs were timed to come to a natural conclusion with the expiry of the Centre of Excellence funding, a large majority of the research work is continuing under the new structure, and these are included in the Module sections of this annual report. In addition, a number of new projects have been included in these sections, with more to be introduced as the Modules evolve.

TRANSFORMING THE MINING VALUE CHAIN

AN ARC INDUSTRIAL TRANSFORMATION RESEARCH HUB

CODES, together with its research partners, was awarded one of the Australian Research Council’s (ARC) Industrial Transformation Research Hubs in the organisation’s latest funding round, announced in June. The ARC has allocated nearly $4 million over the five-year life of the Hub, with a further $4 million of matching funds being pledged by participants within the minerals industry. Professor David Cooke has been appointed as Hub Director, and will be supported by a team of world class researchers from within CODES, plus industry partners.

In addition to a consortium of global companies co-ordinated by AMIRA International, the Australian partner organisations are Newcrest Mining, BHP Billiton – Olympic Dam, and the service company Corescan. Other organisations affiliated with the initiative include Laurin Technic, National Information Communications Technology Australia (NICTA) and the University of Exeter in the UK.

Two planning meetings with Hub participants were held (Hobart and Melbourne) in 2014.

THE ROLE OF THE HUB

The Hub is entitled Transforming the Mining Value Chain (TMVC) and encompasses a wide array of activities from exploration, discovery, ore deposit characterisation, and environmental assessment, through to mining, ore processing and waste rock disposal. The main objective is to improve efficiencies within this value chain, focussing on areas that will have a marked impact on the value of Australia’s mineral resources, thereby benefiting the nation’s economy.

The minerals industry will benefit greatly through advanced mineral characterisation methods, and innovative technologies for their implementation, which will be able to be applied much earlier in the mining value chain. This will enhance decision making and maximise productivity and profitability at Australian mine sites.

RESEARCH THEMES

The Hub will focus on the country’s highest earning precious metal gold, the base metal copper, and the main energy metal uranium. Each of these commodities has its own scientific challenges, which the Hub will tackle through three principal research themes:

- **Theme 1:** Detecting proximity to ore (footprints).
- **Theme 2:** Quantifying geometallurgical characteristics.
- **Theme 3:** Predicting geoenvironmental behaviour.

AIMS

The Hub is set to resolve some of the greatest challenges currently facing the minerals industry. The aims are to:

- Achieve real-time automated acquisition and interpretation of detailed mineralogical, textural and geochemical data in mine site coresheds that can be used immediately for 3D-modelling of geometallurgical and geoenvironmental parameters and ore zone footprints.
- Move the mining industry from the data-rich, but comparatively knowledge-poor, environment that they currently work in to a data-rich, knowledge-rich environment that allows for rapid decision making during the exploration and development phases of mining operations.

TMVC Hub Director

David Cooke.
• Develop tools and protocols that allow near-instantaneous identification of proximity to ore zones, together with geometallurgical and geoenvironmental characterisation of ores and waste through automated core logging and spectral analyses of drill core. This will enable 3-D exploration, mining and geometallurgy models to be developed that are continually updated as the exploration or resource drilling program continues.

By helping to develop more efficient and environmentally sustainable practices throughout the mining value chain, it is anticipated that the Hub will extend the lives of mines and create employment opportunities across Australia’s regional mining centres.

LOOKING FORWARD

The agreement between the University of Tasmania and the Australian Research Council has been signed and agreements between the financial partners of the Hub are being negotiated. Anticipated start-up of the Hub will be mid-2015.

CENTRE OF EXCELLENCE STATUS

CODES has obtained approval from the Australian Research Council (ARC) to retain its Centre of Excellence (CoE) status, despite its tenure as a funded Centre coming to a conclusion at the end of 2013.

Provision is made in the ARC rules for Centres to apply to retain their CoE status, providing they meet certain criteria. One of the key requirements is that there must be no substantive changes to the Centre’s research program. Although CODES has transitioned to a new four-Module research model, its primary strategy remains to build on the research strengths that industry partners have valued during its tenure as a funded CoE. Therefore, the case for meeting this criterion was relatively straightforward to make. Nevertheless, a detailed application had to be submitted to the ARC, which was executed via the University of Tasmania. Confirmation of the successful outcome was received in May.

TIMELINE

1989
CODES formed as an ARC Key Centre.

1997
Awarded Special Research Centre status by the ARC.

2005
Awarded Centre of Excellence status by the ARC.

2008
Successful mid-term review guarantees ARC funding for the final two years of the original proposal, plus an extension until the end of 2013.

2013
Tenure as an ARC-funded Centre of Excellence ends.

2014
ARC grants approval for CODES to retain its Centre of Excellence Status.*
CODES, together with a group of industry partners, awarded one of the ARC’s Industrial Transformation Research Hubs.

*Note that no further extensions of funding were allowed under the ARC’s rules for this type of Centre.

THE NEW RESEARCH MODEL HAS BEEN DESIGNED TO ENABLE US TO MAINTAIN AND BUILD ON OUR CORE STRENGTHS, WHILE ENSURING THAT WE HAVE THE STRUCTURES AND CAPABILITIES TO ADAPT TO THE EVOLVING NEEDS OF THE MINERALS INDUSTRY.

Director, Bruce Gemmell

1997
Awarded Special Research Centre status by the ARC.

2013
Tenure as an ARC-funded Centre of Excellence ends.

2014
ARC grants approval for CODES to retain its Centre of Excellence Status.*
CODES, together with a group of industry partners, awarded one of the ARC’s Industrial Transformation Research Hubs.

*Note that no further extensions of funding were allowed under the ARC’s rules for this type of Centre.
CENTRE DIRECTOR
Centre Director, Professor Bruce Gemmell, is responsible for the scientific leadership and operational management of the Centre. He is supported in these duties by Professor David Cooke (Deputy Director), the Advisory Board and the Executive Committee.

HUB DIRECTOR
Professor David Cooke is Director of the Transforming the Mining Value Chain Hub.

ADVISORY BOARD
The Advisory Board meets at least once a year to review the progress of the Centre and to advise on future directions. The Board is composed of representatives from major industry partners, University of Tasmania senior management, and key national geoscience organisations. It is chaired by Dr Paul Heithersay, from the Department of State Development, South Australia, who has extensive experience in the minerals industry and the public service. Paul Agnew from Rio Tinto is Deputy Chair.

SCIENCE PLANNING PANEL
The Science Planning Panel meets annually for a one-day forum of presentations relating to the Centre’s scientific research progress and to discuss potential new research projects. The membership is wider than that of the Advisory Board and includes a representative from all partner companies. The Panel is designed to provide industry with an opportunity to influence future research directions of the Centre.

EXECUTIVE COMMITTEE
The Executive Committee consists of the Centre Director, Deputy Director, the Module Leaders, the Communications Manager, and a representative from UTAS Financial Services. It meets approximately six times a year, working closely with the Director to develop the Centre’s goals, strategies and research directions.
STAFF MOVEMENTS 2014

APPOINTMENTS
Dr Matt Cracknell was appointed as a Research Fellow working in geophysics, with a focus on machine learning and data mining.

Dr Dan Gregory was appointed as a Research Fellow, specialising in paleo-oceanography and ore deposit vectoring techniques.

Jeff Steadman was appointed as a Research Fellow, specialising in ore and sedimentary pyrite geochemistry.

DEPARTURES
A total of nine academic and professional staff left their positions during the year, but just over half of these people have been retained in honorary capacities.

ACADEMIC STAFF
Drs Sharon Allen, Daniel Bombardieri and Chun-kit Lai left their research positions at CODES, but have been retained in honorary roles.

Professor Jocelyn McPhie retired at the end of the year, and has also been retained in an honorary position.

Drs Nic Jansen, Lyudmyla Koziy, Takayuki Manaka and Nathan Fox left the Centre during the period, the latter to take up a position with CRC ORE, via the Discipline of Earth Sciences.

PROFESSIONAL STAFF
Laboratory Manager Peter Cornish retired, but has been retained as a University Associate.

Left: Delegates enjoy a break at the Science Planning Meeting.
Top: Newly appointed Research Fellow Jeff Steadman.
Centre: Jocelyn McPhie, who retired at the end of 2014, with Garry Davidson (L) and Bruce Gemmell. Bottom: Peter Cornish inspects one of his retirement gifts, bookends made from trachyte, watched by David Selley and Jacqui Halpin.
STAFF AND MANAGEMENT

<table>
<thead>
<tr>
<th>Name</th>
<th>%</th>
<th>Position</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director, Professor J Bruce Gass, BSc (UBC), MA, PhD (Dartmouth)</td>
<td>100</td>
<td>VHMS deposits and epithermal Au-Ag</td>
<td></td>
</tr>
</tbody>
</table>

ACADEMIC/RESEARCH STAFF AT UTAS

<table>
<thead>
<tr>
<th>Name</th>
<th>%</th>
<th>Position</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Sharon Allen, BSc (Massey), MSc (Auckland), PhD (Monash)</td>
<td>100</td>
<td>Volcanic facies analysis</td>
<td></td>
</tr>
<tr>
<td>Dr Mike Baker, BSc Hons (Sydney), PhD (UTAS)</td>
<td>100</td>
<td>Igneous petrology, mineral chemistry</td>
<td></td>
</tr>
<tr>
<td>Dr Ivan Belousov, BSc, MSc (Moscow), PhD (Vernadsky)</td>
<td>100</td>
<td>Igneous petrology, geochemistry, volcanology, LA-ICP-MS analysis</td>
<td></td>
</tr>
<tr>
<td>Associate Professor Ron Berry, BSc, PhD (Flinders)</td>
<td>100</td>
<td>Structure of mineralised provinces, CHIME dating, geometallurgy</td>
<td></td>
</tr>
<tr>
<td>Dr Stuart Bull, BSc Hons, PhD (Monash)</td>
<td>100</td>
<td>Clastic and carbonate sedimentology and volcanology</td>
<td></td>
</tr>
<tr>
<td>Dr Rebecca Carey, BSc Hons (UTAS), PhD (U Hawaii)</td>
<td>50</td>
<td>Volcanology</td>
<td></td>
</tr>
<tr>
<td>Dr Matt Cracknell, BSc Hons (UTAS)</td>
<td>30</td>
<td>Geophysics, machine learning and data mining</td>
<td></td>
</tr>
<tr>
<td>Professor Tony Crawford, BSc Hons, PhD (Melbourne)</td>
<td>50</td>
<td>Petrology, geochemistry and tectonics of volcanic arcs</td>
<td></td>
</tr>
<tr>
<td>Professor Leonid Danyushhevsky, PhD (Vernadsky Inst.)</td>
<td>50</td>
<td>Petrology, geochemistry, LA-ICP-MS analysis</td>
<td></td>
</tr>
<tr>
<td>Dr Garry Davidson, BSc Hons (ANU), PhD (UTAS)</td>
<td>50</td>
<td>Sulfur isotope geochemistry and Cu-Au ores</td>
<td></td>
</tr>
<tr>
<td>Dr Paul Davidson, BSc Hons, PhD (UTAS)</td>
<td>50</td>
<td>Melt and fluid inclusions</td>
<td></td>
</tr>
<tr>
<td>Dr Trevor Falloon, BSc Hons (Canterbury), BTeaching, PhD (UTAS)</td>
<td>50</td>
<td>Marine geoscience, petrology</td>
<td></td>
</tr>
<tr>
<td>Professor David Green, BSc Hons, MSc, DSc, DLitt Hon (UTAS), PhD (Cambridge)</td>
<td>50</td>
<td>Experimental petrology</td>
<td></td>
</tr>
<tr>
<td>Dr Dan Gregory, BSc Chem, BSc Hons Geol (UBC), PhD (UTAS)</td>
<td>100</td>
<td>Paleo-oceanography and ore deposit vectoring techniques</td>
<td></td>
</tr>
<tr>
<td>Dr Jacqui Halpin, BSc Hons (Melbourne), PhD (Sydney)</td>
<td>100</td>
<td>Metamorphic petrology, geochronology</td>
<td></td>
</tr>
<tr>
<td>Dr Julie Hunt, MSc (UBC), PhD (JCU)</td>
<td>100</td>
<td>Geometallurgy, IOCG deposits</td>
<td></td>
</tr>
<tr>
<td>Dr Maya Kamenetsky, PhD (UTAS)</td>
<td>100</td>
<td>MLA-SEM, geometallurgy, petrology</td>
<td></td>
</tr>
<tr>
<td>Professor Vadim Kamenetsky, BSc Hons (Moscow), PhD (Vernadsky Inst.)</td>
<td>50</td>
<td>Petrology and geochemistry of melt inclusions</td>
<td></td>
</tr>
<tr>
<td>Professor Khin Zaw, BSc (Rangoon), MSc (Queen's), PhD (UTAS)</td>
<td>100</td>
<td>Fluid inclusions, SE Asian metallogenesis</td>
<td></td>
</tr>
<tr>
<td>Dr Chun-kit Lai, BSc, MPhil (HKU), PhD (UTAS)</td>
<td>100</td>
<td>Petrology, geochemistry and tectonics of SE Asia</td>
<td></td>
</tr>
<tr>
<td>Dr Peter McGooldrick, BSc Hons, PhD (Melbourne)</td>
<td>50</td>
<td>Ore deposits and their halos</td>
<td></td>
</tr>
<tr>
<td>Professor Jocelyn McPhie, BA Hons (Macquarie), PhD (UNE)</td>
<td>50</td>
<td>Volcanic facies architecture and volcanic textures</td>
<td></td>
</tr>
<tr>
<td>Dr Sebastien Meffre, BSc Hons (UTAS), PhD (UNE)</td>
<td>100</td>
<td>Petrology and tectonics of the SW Pacific</td>
<td></td>
</tr>
<tr>
<td>Dr Karin Orth, BSc Hons (Monash), PhD (UTAS)</td>
<td>100</td>
<td>Volcanology</td>
<td></td>
</tr>
<tr>
<td>Associate Professor Anya Reading, BSc Hons (Edinburgh), PhD (Leeds)</td>
<td>50</td>
<td>Geophysics, seismology, computational methods</td>
<td></td>
</tr>
<tr>
<td>Dr Michael Roach, BSc Hons (Newcastle), PhD (UTAS)</td>
<td>20</td>
<td>Geophysical responses of ore deposits</td>
<td></td>
</tr>
<tr>
<td>Dr Robert Scott, BSc Hons, PhD (Monash)</td>
<td>70</td>
<td>Structural geology, gold deposits / MTEC Senior Lecturer and Masters Program Coordinator</td>
<td></td>
</tr>
<tr>
<td>Dr David Selley, BSc Hons (Adelaide), PhD (UTAS)</td>
<td>80</td>
<td>Structural geology, basin analysis, ore deposit modelling</td>
<td></td>
</tr>
<tr>
<td>Jeff Steadman, BSc (Central Missouri), MSc (Iowa)</td>
<td>100</td>
<td>Ore and sedimentary pyrite geochemistry; seawater composition through geologic time</td>
<td></td>
</tr>
<tr>
<td>Dr Aleksandr (Sasha) Stepanov, MSc (Novosibirsk), PhD (ANU)</td>
<td>100</td>
<td>Geochemistry of rare metals</td>
<td></td>
</tr>
<tr>
<td>Dr Lejun Zhang, BSc, PhD (HFUT)</td>
<td>100</td>
<td>Porphyry Cu-Au and HS epithermal</td>
<td></td>
</tr>
</tbody>
</table>
ACADEMIC/RESEARCH STAFF BASED AT COLLABORATIVE INSTITUTIONS/INDUSTRY

<table>
<thead>
<tr>
<th>Name</th>
<th>%</th>
<th>Institution</th>
<th>Hon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Daniel Bombardieri</td>
<td></td>
<td>Mineral Resources Tasmania</td>
<td>Hon</td>
</tr>
<tr>
<td>Professor Ray Cas</td>
<td></td>
<td>Monash University</td>
<td>Hon</td>
</tr>
<tr>
<td>Kathy Ehrig</td>
<td></td>
<td>BHP Billiton</td>
<td>Hon</td>
</tr>
<tr>
<td>Associate Professor Jeff Foster</td>
<td></td>
<td>Sirius Resources</td>
<td>Hon</td>
</tr>
<tr>
<td>Professor Mark Hannington</td>
<td></td>
<td>University of Ottawa</td>
<td>Hon</td>
</tr>
<tr>
<td>Dr Anthony Harris</td>
<td></td>
<td>Newcrest Mining</td>
<td>Hon</td>
</tr>
<tr>
<td>Professor Peter Hollings</td>
<td></td>
<td>Lakehead University</td>
<td>Hon</td>
</tr>
<tr>
<td>Professor Bernd Lottermoser</td>
<td></td>
<td>University of Exeter</td>
<td>Hon</td>
</tr>
<tr>
<td>Dr Tony Webster</td>
<td></td>
<td>University of Queensland</td>
<td>Hon</td>
</tr>
<tr>
<td>Dr Noel White</td>
<td></td>
<td>Consultant</td>
<td>Hon</td>
</tr>
<tr>
<td>Dr Jamie Wilkinson</td>
<td></td>
<td>Imperial College London</td>
<td>Hon</td>
</tr>
</tbody>
</table>

TECHNICAL/ADMINISTRATIVE STAFF

<table>
<thead>
<tr>
<th>Name</th>
<th>%</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr Steve Calladine</td>
<td>100</td>
<td>Communications Manager</td>
</tr>
<tr>
<td>Mrs Michele Chapple-Smith</td>
<td>40</td>
<td>Lapidary Technician</td>
</tr>
<tr>
<td>Mr Alex Cuisson</td>
<td>80</td>
<td>Lapidary Technician</td>
</tr>
<tr>
<td>Ms Sarah Gilbert, BSc Hons (UTAS)</td>
<td>100</td>
<td>Laboratory Manager ICP-MS</td>
</tr>
<tr>
<td>Dr Jane Higgins, BIS, BAntSt Hons, PhD (UTAS)</td>
<td>80</td>
<td>Personal Assistant to the Director</td>
</tr>
<tr>
<td>Mr Ian Little, BSc Hons (UTAS)</td>
<td>50</td>
<td>Maintenance, Field Equipment, and Safety Officer</td>
</tr>
<tr>
<td>Ms Elena Lounejeva</td>
<td>100</td>
<td>Laboratory Analyst</td>
</tr>
<tr>
<td>Mrs Katie McGoldrick</td>
<td>20</td>
<td>Laboratory Assistant</td>
</tr>
<tr>
<td>Ms Caroline Mordaunt, BA Hons (King’s College London)</td>
<td>20</td>
<td>Administrative Assistant</td>
</tr>
<tr>
<td>Dr Paul Olin, BA (SOU), MSc, PhD (WSU)</td>
<td>100</td>
<td>Laboratory Analyst</td>
</tr>
<tr>
<td>Ms June Pongratz</td>
<td>5</td>
<td>Publications</td>
</tr>
<tr>
<td>Mrs Claire Rutherford</td>
<td>40</td>
<td>Administrative Assistant</td>
</tr>
<tr>
<td>Mr Jay Thompson, BSc Hons, MSc (U Iowa)</td>
<td>100</td>
<td>Laboratory Analyst</td>
</tr>
<tr>
<td>Mrs Jennifer Thompson, BSc (OSU), MSc (U Iowa)</td>
<td>50</td>
<td>Laboratory Analyst</td>
</tr>
<tr>
<td>Ms Isabella von Lichtan, BSc Hons (UTAS)</td>
<td>15</td>
<td>Curator</td>
</tr>
</tbody>
</table>
ADVISORY BOARD

Name

<table>
<thead>
<tr>
<th>Chair: Paul Heithersay</th>
<th>Department of State Development, South Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Chair: Paul Agnew</td>
<td>Rio Tinto Exploration</td>
</tr>
<tr>
<td>Margaret Britz</td>
<td>Dean, Faculty of Science, Engineering and Technology, UTAS</td>
</tr>
<tr>
<td>David Cooke</td>
<td>CODES, UTAS</td>
</tr>
<tr>
<td>Paul Cromie</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Joe Cucuzza</td>
<td>AMIRA International</td>
</tr>
<tr>
<td>Leonid Danyushevsky</td>
<td>CODES, UTAS</td>
</tr>
<tr>
<td>Andrew Davies</td>
<td>Teck Resources</td>
</tr>
</tbody>
</table>

Name	
John Dickey	Head, School of Physical Sciences, UTAS
Kathy Ehrig	BHP Billiton
Bruce Gemmell	CODES, UTAS
John Holliday	Consultant
Andrew McNeill	Mineral Resources Tasmania
Colin Moorhead	Newcrest Mining
Paddy Nixon	DVC Research, UTAS
Aubrey Paverd	Buenaventura
Noel White	Consultant

EXECUTIVE COMMITTEE

Name

Chair: Bruce Gemmell	Director
Steve Calladine	Communications Manager
David Cooke	Deputy Director, and Transforming the Mining Value Chain Hub Director
Leonid Danyushevsky	Enabling Technologies Module Leader
Garry Davidson	Ore Deposits: Characterisation and Context Module Leader

Name	
Julie Hunt	Geometallurgy Module Leader
Jocelyn McPhie	Training Module Co-Leader/Head of the Discipline of Earth Sciences
Helen Scott	UTAS Financial Services
Robert Scott	Training Module Co-Leader

SCIENCE PLANNING PANEL

(also includes the Executive Committee and all CODES Research Staff and Students)

Name

Chair: Bruce Gemmell	Director, CODES
Paul Agnew	Rio Tinto Exploration
Edwin Bonilla	NICTA
John Dickey	Head, School of Physical Sciences, UTAS
Kathy Ehrig	BHP Billiton
John Everard	Mineral Resources Tasmania
Bruce Godfrey	Australian Scientific Instruments
Will Goodall	University of Queensland
Anthony Harris	Newcrest Mining
Paul Heithersay	Department of State Development, South Australia
Tony Hope	GHD

Name	
Andrew McNeill	Mineral Resources Tasmania
Colin Moorhead	Newcrest Mining
Javier Ortuza	Anglo American
Aubrey Paverd	Buenaventura
Michael Perfit	University of Florida
Leon Rawson	GHD
Adele Seymon	AMIRA International
Daniel Steinberg	NICTA
Brett Stewart	Mineral Resources Tasmania
Steve Turner	Newmont Asia Pacific
Steve Walters	CRC ORE
Noel White	Consultant
QUALITY STAFF, OPERATING IN A TEAM ENVIRONMENT, HAVE BEEN KEY FACTORS IN CODES’ SUCCESS

Rebecca Carey inspecting pumice from the 2012 Havre submarine volcanic eruption that found its way to Tasmanian shores during the year.
MODULE
ORE DEPOSITS: CHARACTERISATION AND CONTEXT

OBJECTIVE
To describe the geological and geophysical features of ore forming systems and terrains, and use this information to devise better means of discovering mineral resources at surface and under cover.

INTRODUCTION
The Ore Deposits: Characterisation and Context Module provides end-users with process-based models for the formation of high value metalliferous ore deposits and a framework to develop innovative new tools for determining the most prospective regions for exploration (fertility), and for targeting buried ore deposits (vectoring).

The Module is the result of the amalgamation of the Location, Formation and Discovery Programs, which were in operation until the end of 2013, when CODES’ tenure as a funded ARC Centre of Excellence (CoE) came to an end. Key objectives in the amalgamation were to ensure that all the well established and valued research capabilities were maintained within an expanded framework that better caters for the needs of key stakeholders, particularly those in the minerals industry.

As a result, many of the projects under the CoE structure have been maintained, alongside new initiatives that ensure that the Centre’s fundamental and applied research continues to expand and evolve.

As a reflection of CODES’ diversity in the field of hard-rock geology, the new Module has six themes, with a current total of 25 projects.

HIGHLIGHTS
Despite being in its inaugural year, the Module enjoyed a relatively smooth transition from the Program structure in place in 2013. Many of the older projects evolved and adjustments were made, where appropriate, to ensure that they were well positioned to build on their achievements. These studies were augmented by a number of exciting new projects that came on stream during the period.

FINAL REPORTS AND MEETINGS
The year also saw the conclusion of some of CODES most successful and long running projects. The final meeting of the ‘Enhanced geochemical targeting in magmatic-hydrothermal systems’ project, AMIRA P1060, was held in June. This initiative had the support of 20 industry sponsors, making it the largest exploration-based research project in AMIRA’s history. In November, the final report was delivered to sponsors of the Ore Deposits of SE Asia project, which greatly enhanced the geological knowledge of mainland SE Asia, and more recently of Sumatra. Both projects built on earlier CODES research, and negotiations are in progress for them to continue to evolve via new initiatives (see Looking Forward section).

PUBLICATIONS
It was an excellent year for publications, with 50 refereed journal articles being published that were directly related to the Module. Highlights included:

• Special Issue of Economic Geology devoted to ‘Alkaline Porphyry Cu-Au and Epithermal Au Deposits’. The publication includes contributions from 15 authors affiliated to CODES.
• Research from the SE Asia project was featured in the print version of a special issue of Gondwana Research entitled Tectonics and Metallogeny of Mainland SE Asia. The publication included 12 authors affiliated to CODES.
RESEARCH OUTCOMES

For such a large Module, space restrictions do not allow inclusion of research activities from all the projects. However, here is a selection of some of the major highlights from the Module as a whole.

• Jacqui Halpin and Peter McGoldrick were the focus of intense media attention when they announced that they had established a strong prehistoric connection between Tasmania and western North America. The research findings, associated with the Rock Cape Group in NW Tasmania, were published in *Precambrian Research*.

• Master of Economic Geology student Billy Beas’ research accurately defined the setting and age of gold deposits in northern Peru.

• A geophysics team, led by Anya Reading, obtained new 3D images of the seismic structure beneath Bass Strait.

• PhD student Jodi Fox produced a new geological map of Heard Island using satellite imagery.

• A team led by Ross Large produced a database that provides the basis for using pyrite as a prospective fertility and vectoring tool.

• PhD student Selina Wu completed her study of the mineralogical and geochemical characteristics of district-scale alteration in the Que Hellyer District in the Mount Read Volcanics.

AWARDS

In addition to the awards listed below, a number of students associated with the Module received recognition during the year. These achievements are covered in the SEG Student Chapter’s report in the Training Module section of this document.

• Rebecca Carey received the UTAS Vice Chancellor’s Award for Research Excellence.

• David Cooke was presented with the SEG Silver Medal, and collaborator Noel White with the SEG Penrose Gold Medal, at SEG 2014, held in Keystone, Colorado, USA.

• Research related to the AMIRA P765/P765A and P1060 projects won the ‘Measurement in Action’ category at the prestigious UK-based Institute of Engineering and Technology’s Innovation Awards in London.

• Sam Holt received the GSA’s David Groves Medal for ‘the best paper in the *Australian Journal of Earth Sciences* by a young Australia’.

• Stephanie Sykora achieved first place in the student poster presentation category at the SEG’s annual conference in Keystone, Colorado, USA.
MEET THE TEAM

LEADER:
Garry Davidson

TEAM MEMBERS:
Mike Baker, Ivan Belousov, Daniel Bombardieri, Stuart Bull, Rebecca Carey, David Cooke, Matt Cracknell, Leonid Danyushevsky, Paul Davidson, Nathan Fox, Bruce Gemmell, Dan Gregory, Jacqui Halpin, Nic Jansen, Maya Kamenetsky, Vadim Kamenetsky, Joe Knight, Chun-kit Lai, Ross Large, Elena Lounejeva, Takayuki Manaka, Peter McGoldrick, Jocelyn McPhie, Sebastien Meffre, Karin Orth, Anya Reading, Michael Roach, Robert Scott, David Selley, Jeff Steadman, Sasha Stepanov, Jay Thompson, Jennifer Thompson, Craig Winter, Khin Zaw, Lejun Zhang

PHD STUDENTS:
Olga Apukhtina, Mohd Basril Iswadi Bin Basori, Heidi Berkenbosch, Alexander Cherry, Esmaeil Eshaghi, Pedro Fonseca, Jodi Fox, Hugo Galván, Margy Hawke, Jacob Heathcote, Sam Holt, Qiuyue Huang, Carlos Jimenez, Sean Johnson, Erin Lawlis, Charles Makoundi, Larriana Morgan, Indrani Mukherjee, Jacob Mulder, Evan Orovan, Adam Pacey (Imperial College London), Simone Pilia (ANU), Jose Piquer, Marc Rinne, Subira Sharma, Nathan Steeves, Francisco Testa, Irma Vejelyte, Daniele Vergani, Sally Watson (IMAS), Selina Wu

MASTERS STUDENTS:
Ayat Baig (Lakehead University), Billy Beas, Djojanne Celiz, Jo Condon, Glen Deimar, Pablo Farias, Xuan Troung Le, Wes Lueck (Lakehead University), Neil Macaladad, Saranya Nuanla-Ong, Emily Smyk (Lakehead University), Stephanie Sykora

HONOURS STUDENTS:
Wayne Baker, Ashby Cooper, Tobias Erskine, Supitchaya Paipana, Naomi Potter, Jonathan Traynor, Toban Wild (Monash), Jie Yu
<table>
<thead>
<tr>
<th>COLLABORATORS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGLO AMERICAN</td>
</tr>
<tr>
<td>Paul Cromie</td>
</tr>
<tr>
<td>ANGLOGOLD ASHANTI</td>
</tr>
<tr>
<td>Michael Nugus</td>
</tr>
<tr>
<td>BHP BILLITON, OLYMPIC DAM</td>
</tr>
<tr>
<td>Kathy Ehrig</td>
</tr>
<tr>
<td>BRITISH GEOLOGICAL SURVEY</td>
</tr>
<tr>
<td>Mike Crow</td>
</tr>
<tr>
<td>CAMECO</td>
</tr>
<tr>
<td>Penny Large</td>
</tr>
<tr>
<td>CHIANG MAI UNIVERSITY, THAILAND</td>
</tr>
<tr>
<td>Phisit Limtrakun,</td>
</tr>
<tr>
<td>Sampan Singhrajwarapan,</td>
</tr>
<tr>
<td>Weerapan Srichan</td>
</tr>
<tr>
<td>CLUMP MOUNTAIN GEO SCIENCE</td>
</tr>
<tr>
<td>Pat Williams</td>
</tr>
<tr>
<td>COLORADO STATE UNIVERSITY, USA</td>
</tr>
<tr>
<td>Holly Stein</td>
</tr>
<tr>
<td>CONSULTANT</td>
</tr>
<tr>
<td>Noel White</td>
</tr>
<tr>
<td>CSIRO</td>
</tr>
<tr>
<td>James Cleverley, June Hill</td>
</tr>
<tr>
<td>CURTIN UNIVERSITY</td>
</tr>
<tr>
<td>Fred Jourdan</td>
</tr>
<tr>
<td>DEPARTMENT OF MINERAL RESOURCES, THAILAND</td>
</tr>
<tr>
<td>Pol Chaodumrong,</td>
</tr>
<tr>
<td>Somboon Khositanont</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>EMMERSON RESOURCES</td>
</tr>
<tr>
<td>Hamish Johns, Grant Osborne</td>
</tr>
<tr>
<td>EXXON MOBIL</td>
</tr>
<tr>
<td>Nick Direen</td>
</tr>
<tr>
<td>FIRST QUANTUM MINERALS</td>
</tr>
<tr>
<td>David Wood</td>
</tr>
<tr>
<td>FLINDERS UNIVERSITY</td>
</tr>
<tr>
<td>John Long</td>
</tr>
<tr>
<td>GEOLOGICAL SURVEY OF FINLAND</td>
</tr>
<tr>
<td>Peter Sorjonen-Ward</td>
</tr>
<tr>
<td>GEOLOGICAL SURVEY OF JAPAN</td>
</tr>
<tr>
<td>Kenzo Sanematsu</td>
</tr>
<tr>
<td>GEOLOGICAL SURVEY OF SOUTH AUSTRALIA</td>
</tr>
<tr>
<td>Rian Dutch, Anthony Reid</td>
</tr>
<tr>
<td>GEOLOGICAL SURVEY OF WESTERN AUSTRALIA</td>
</tr>
<tr>
<td>Trevor Beardsmore, Julie Hollis, Christopher Phillips</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GEOSCIENCE AUSTRALIA</td>
</tr>
<tr>
<td>Geoff Fraser, David Huston,</td>
</tr>
<tr>
<td>Terry Mernagh, Roger Skirrow</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GEOSCIENCE VICTORIA</td>
</tr>
<tr>
<td>Ross Cayley</td>
</tr>
<tr>
<td>GNS NEW ZEALAND</td>
</tr>
<tr>
<td>Jannine Cooper,</td>
</tr>
<tr>
<td>Cornel de Ronde</td>
</tr>
<tr>
<td>GUANGZHOU INSTITUTE OF GEOCHEMISTRY, CHINA</td>
</tr>
<tr>
<td>Huayong Chen, Jinsheng Han</td>
</tr>
<tr>
<td>HANOI UNIVERSITY OF MINING AND GEOLOGY, VIETNAM</td>
</tr>
<tr>
<td>Hai Thanh Tran</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HAWAII VOLCANO OBSERVATORY, USA</td>
</tr>
<tr>
<td>Tim Orr, Matthew Patrick,</td>
</tr>
<tr>
<td>Michael Poland</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
NEWCREST MINING
Benjamin Ackerman, Antonius Bambang, Nicholas Fitzpatrick, Anthony Harris, Fiona Karaut, Colin McMillan, Paul Napier, Rendy Nurdianto, John Rutter, Daud Silitonga, Dan Wardiman

NORTHERN TERRITORY GEOLOGICAL SURVEY
Dorothy Close, Andrew Wygralak

OZ MINERALS
Hamish Freeman

PITON DE LA FOURNAISE OBSERVATORY, REUNION ISLAND
Andrea Di Muro

RIO TINTO EXPLORATION
Bryan Bowden

ROYAL HOLLOWAY UNIVERSITY OF LONDON, UK
Ian Watkinson

RUSSIAN ACADEMY OF SCIENCES
Valery Maslennikov

SMITHSONIAN INSTITUTION, USA
Richard Fiske

TARBIAT MODARES UNIVERSITY, IRAN
Ali Sholeh

TERRAMIN AUSTRALIA
Ken Cross

UNIVERSITY OF ADELAIDE
Cristiana Ciobanu, Nigel Cook

UNIVERSITY OF ALBERTA, CANADA
Robert Creaser

UNIVERSITY OF BALLARAT
Stafford McKnight

UNIVERSITY OF BRITISH COLUMBIA, CANADA
Richard Friedman, Jim Mortensen

UNIVERSITY OF CALIFORNIA RIVERSIDE, USA
Tim Lyons

UNIVERSITY OF CENTRAL MISSOURI, USA
Mark Dudley, John L. Nold

UNIVERSITY COLLEGE OF SCIENCE, TEHRAN, IRAN
Mirsaleh Mirmohammadi

UNIVERSITY OF COLOGNE, GERMANY
Maria Kirchenbaur

UNIVERSITY OF HAWAII, USA
Bruce Houghton

UNIVERSITY OF JOHANNESBURG, SOUTH AFRICA
Bradley Guy

UNIVERSITI KEBANGSAAN, MALAYSIA
Mohd Rozi Umor, Wan Fuad Wan Hassan

UNIVERSITY OF MALAYA, MALAYSIA
Azman Ghandi, Teh Guan Hoe

UNIVERSITY OF MELBOURNE
Andy Gleadow, Barry Kohn, Roland Maas

UNIVERSITY OF NEW ENGLAND
Luke Milan

UNIVERSITY OF NEW SOUTH WALES
Ian Graham

UNIVERSITY OF Otago, NEW ZEALAND
James White

UNIVERSITY OF OTTOWA, CANADA
Mark Hannington

UNIVERSITY OF PADJAJARAN, BANDUNG, INDONESIA
Mega Rosana

UNIVERSITY OF QUEENSLAND
Sue Golding, Paulo Vasconcelos

UNIVERSITY OF SCIENCE AND TECHNOLOGY, CHINA
Yuling Xie

UNIVERSITY OF SYDNEY
Simon Williams

UNIVERSITY OF TASMANIA
Mike Coffin, Karsten Goemann, Pat Quilty, Thomas Rodemann, Donna Satterthwait, Joanne Whittaker

UNIVERSITY OF WAIKATO, NEW ZEALAND
Alan Hogg

UNIVERSITY OF WESTERN AUSTRALIA
Mark Barley

UNIVERSITY OF WESTERN SYDNEY
Lin Sutherland

WOODS HOLE OCEANOGRAPHIC INSTITUTION, USA
Adam Soule

YALE UNIVERSITY, USA
Noah Planavsky

YUKON GEOLOGICAL SURVEY, CANADA
Patrick Sack
PROJECT SUMMARIES

THEME 1 – ORE FERTILITY OF THE CRUST AND MANTLE

MELT-MELT IMMISCIBILITY AND THE ORIGIN OF MAGNETITE-APATITE DEPOSITS

Leader: Paul Davidson
Team Member: Vadim Kamenetsky
Collaborators: Mark Dudley, Mirsaleh Mirmohammadi, John Nold, Rainer Thomas, Yuling Xie

Over the past few decades, melt-melt immiscibility has gone from being a laboratory curiosity to a process that may rank with fractionation as a significant, if subordinate, driver of magma evolution, and thus crustal evolution. In this group of related processes, melts spontaneously split into two or more mutually immiscible phases at specific TPX conditions. In contrast to fractionation, melt-melt immiscibility is a sudden, intense, stepwise change in magma composition.

This project is studying various forms of melt-melt immiscibility, particularly Fe-Ti oxide melt–silicate melt immiscibility (Kiruna-type magnetite-apatite deposits) and silicate melt–silicate melt immiscibility (pegmatites), with a view to understanding the generation of economically valuable ore-deposits. Extensive melt inclusion studies on samples from these types of deposits have provided considerable evidence of melt-melt immiscibility, with silicate, carbonate, sulfide, and Fe-Ti oxide components observed in a number of combinations in various melt inclusions.

A major review paper on Fe-Ti oxide ore bodies has been published in Ore Geology Reviews via collaborators, and a further paper is in progress related to pegmatite studies. The latter research has also resulted in two keynote presentations at international conferences during the year by the team.

ORE DEPOSITS OF SE ASIA

Leader: Khin Zaw
Team Members: Joe Knight, Chun-kit Lai, Ross Large, Takayuki Manaka
Students: Mohd Basril Iswadi Bin Basori, Tobias Erskine, Xuan Truong Le, Charles Makoundi, Saranya Nuanla-Ong, Supitchaya Paipana, Jonathan Traynor
Collaborators: Mark Barley, Alexander Belousova, Marina Belousova, Pol Chaodumrong, Paul Cromie, Mike Crow, Azman Ghandi, Sue Golding, Ian Graham, Wan Fuad Wan Hassan, Teh Guan Hoe, David Huston, Somboon Khositanont, Phisit Limtrakun, Terry Mernagh, Chris Newall, Grahame Oliver, Mega Rosana, Kenzo Sanematsu,
Sampan Singharajwarapan, Weerapan Srichan, Holly Stein, Andri Subandrio, Lin Sutherland, Hai Thanh Tran, Mohd Rozi Umor, Paulo Vasconcelos, Ian Watkinson

This highly successful project came to a conclusion during the year, with a final report being delivered to the sponsors in November. Commencing in 2011, it built on the fruitful outcomes of two previous projects that examined the age, style and origin of key ore deposits in SE Asia in the context of regional tectonic and magmatic cycles. In recent times, the scope of research was expanded to encompass the whole of mainland SE Asia and Sumatra.

In line with its aims, the following major outcomes were achieved over the life of the project:

- A regional tectonic and metallogenic analysis of the mineralised fold belts in mainland SE Asia.
- Deposit-scale studies were conducted to characterise many of the important ore deposits.
- Sponsor companies were provided with an increased understanding of ore deposit location, formation and evolution.
- A new understanding was developed of the geological and tectonic events that formed ore deposits in SE Asia.
- A new, well-constrained, dated, and documented geological framework was provided that enables better exploration targeting within the region.

New findings and activities in the final year of the project included:

- Using field, geochemical and geochronological data from the project combined with published information, entirely new tectonic and terrane elements from within mainland SE Asia were documented.
- The western part of Sibumasu Terrane has a highly complex Mesozoic-Recent geological history, driven by the interactions of the oblique subduction of the Mesotethys and Neotethys beneath West Myanmar-Sumatra, the tectonic coupling of West Myanmar with India during the India-Asia collision, and the extrusional tectonics of mainland SE Asia.
- Geochemistry of Palaeozoic black shale in Malaysia indicates that higher concentrations of gold are predominately found in diagenetic pyrites. Gold and silver have a strong correlation in frambooidal (R= 0.901) and hydrothermal (R= 0.711) pyrites. The genesis of existing orogenic gold deposits in East Malaya may be related to early gold enrichment in diagenetic pyrites hosted in black shales, which was later remobilised during deformation. These results provide key criteria for the two-stage metallogenic model for gold mineralisation within the Bentong-Raub Suture, which is part of the Palaeo-Tethys Suture Zone.
Overall, mainland SE Asia has a unique tectonic evolution of continental microplates, subduction events and collisions, and a unique set of ore deposits formed at specific times and locations.

Studies show that the existence of epithermal- and sediment-hosted ore deposits in many SE Asian countries imply immense exploration potential for deeper-level porphyry- and porphyry-related skarn deposits in these regions.

Although the project has come to an end, it is anticipated that negotiations will be held with industry sponsors to support a new project related to the tectonics and origin of the copper-gold mineralisation of the western Myanmar-Sumatra Terrane.

THEME 2 – VOLCANISM, AND ITS EFFECT ON ORE FORMING PROCESSES

VHMS RESEARCH – MODERN
Leader: Bruce Gemmell
Student: Heidi Berkenbosch

Heidi Berkenbosch’s PhD project at Brothers volcano, in the Tonga-Kermadec arc, continued in 2014. This collaborative project with GNS, New Zealand (Cornel de Ronde) is investigating the ore and gangue mineralogy, textures, paragenesis, mineral chemistry and copper isotopes of the sulfide-sulfate chimneys.

A paper on the Cu isotopes of the chimneys has been accepted by Mineralium Deposita and will be published in early 2015. Two papers were co-authored in Economic Geology in 2014, on the S-Su Knolls hydrothermal field (PNG), and the Palinuro Volcanic Complex (offshore Italy).

VHMS RESEARCH – ANCIENT
Leader: Bruce Gemmell
Team Members: Ross Large, Khin Zaw
Students: Mohd Basril Iswadi Bin Basori, Jo Condon, Margy Hawke, Nathan Steeves, Selina Wu
Collaborators: Mark Hannington, Andrew McNeill, Jim Mortensen

The genesis of volcanic-hosted Cu-Pb-Zn-Ag-Au massive sulfide deposits is being investigated across the spectrum of massive sulfide deposit types, from typical seafloor VHMS (Zn-Pb-Cu-Ag-Au) deposits, through sub-seafloor shallow-water, replacement Au-rich epithermal styles, to deep sub-volcanic intrusion-related Cu-Au-rich styles. In 2014, research was undertaken on deposits at Fossey-Hellyer-Que-River-Mt Charter (Tasmania), DeGrussa (Western Australia), Greens Creek (Alaska) and Tasik Chini (Malaysia).

Selina Wu completed her PhD study on the VHMS deposits in the Que-Hellyer Volcanics, western Tasmania. Selina has been investigating the geologic setting and genetic relationships of the Fossey-Hellyer-Que-River-Mt Charter deposits and the distribution of hydrothermal alteration throughout the district.

Nathan Steeves continued his PhD investigation of the Greens Creek VHMS deposit in southeast Alaska. Nathan is studying the mineralogy, metal distribution and geometallurgical characteristics of the complex ore bodies. The study is being conducted in collaboration with Mark Hannington from the University of Ottawa.

Mohd Basril Iswadi Bin Basori completed his PhD thesis on the geochemical, isotopic and genetic aspects of the Tasik Chini and related VHMS hydrothermal systems in Malaysia. Three styles of massive sulfide mineralisation are distinguished in the Bukit Botol deposit area: a) stratiform sulfide lenses; b) disseminated sulfide; and c) stringer sulfide mineralisation. At Bukit Ketaya, massive sulfide forms as stratiform sheets, overlain by a layer of Mn-Fe-rich exhalites and barite.

Two student projects continued at Sandfire Resources’ VHMS deposit at DeGrussa, WA. The first, a PhD project by Margy Hawke, is investigating the geologic, structural and geochronological setting of the deposits. The second is a project by Jo Condon, which is concentrating on the ore and gangue mineralogy, textures, paragenesis, and mineral chemistry of two of the ore lenses.
The final project in this summary is aimed at improving the age, and geochronological, constraints on the development of the Mount Read Volcanic Belt (MRV) in collaboration with Jim Mortensen (UBC) and Andrew McNeill (MRT). Work included U-Pb dating of zircons, which produced many new dates that have helped to constrain the timing of the development of the MRV and associated VHMS mineralisation. A manuscript was accepted for publication, and will appear in *Economic Geology* in early 2015. A second phase of age dating throughout the MRV is being completed and a second publication is being prepared.

SUBMARINE VOLCANOLOGY AND VHMS RESEARCH

Leader: Jocelyn McPhie
Team Member: Rebecca Carey
Students: Wayne Baker, Pedro Fonseca
Collaborators: Ray Cas, Richard Fiske, Martin Jutzeler, Adam Soule

Pedro Fonseca’s PhD project on the internal stratigraphy and architecture of the Mount Read Volcanics in western Tasmania has achieved correlation between the host sequences to two very important VHMS deposits, Hellyer in the north and Rosebery in the south. Pedro has also produced detailed reconstructions of the volcanic setting and volcano types for the periods before, during and after the VHMS mineralising events at these locations. Pedro’s project is due for completion in early 2015.

Honours student Wayne Baker began a project mid-year at the Archaean DeGrussa VHMS deposit, Western Australia, supervised by Visiting Professor Ray Cas, and sponsored by Sandfire Resources. The project is concentrating on the volcanology and stratigraphy of the host succession in order to improve the exploration model and to refine current ideas on the deposit genesis.

Former CODES’ PhD student, Martin Jutzeler, published two papers based on his PhD project. The project focussed on submarine pyroclastic successions in the USA, New Zealand and Japan. In a *Bulletin of Volcanology* paper, Martin argued for a new interpretation of the Dogashima Formation, Japan, challenging entrenched models for submarine explosive eruption plumes. The Ohanapecosh Formation in Washington has also been important in submarine volcanology, being one of the first submarine pyroclastic successions to be recognised. Martin provided new field and textural data in a paper in the *Bulletin of the Geological Society of America*, demonstrating that most of the formation was deposited from subaqueous density currents sourced from subaerial pyroclastic flows that crossed the coast.

Rebecca Carey won a National Science Foundation Research Grant (USA) that will fund a research cruise to study the aftermath of the 2012 explosive submarine eruption of Havre volcano. This eruption took place in at least 900 m of water and produced a large, long-lived pumice raft and weak subaerial plume. Rebecca and co-authors published a paper outlining the setting and style of the eruption in *EOS*, and another paper in *Nature Communications* with Martin Jutzeler, describing the pumice raft and comparing its path with predictions of numerical models. The 2015 Havre research cruise will map and sample the submarine products of the 2012 eruption, and will provide an unprecedented sample and data set for further volcanological research.
Jocelyn McPhie was invited to join an international team in writing a proposal to the Continental Scientific Drilling Project for the drilling of Surtsey, a famous Icelandic volcanic island created by offshore basaltic eruptions in 1963-67. The proposed drilling will recover core that can be used to answer numerous volcanological questions relating to the submarine part of the island, and also the active hydrothermal system in the core of the volcano.

RHYOLITIC CALDERA SUCCESSIONS
Leader: Jocelyn McPhie
Team Member: Bruce Gemmell
Student: Billy Beas
Collaborators: Yoshihiko Goto, Kenichiro Tani

Jocelyn McPhie and Associate Professor Yoshihiko Goto undertook fieldwork in Hokkaido, Japan, investigating the architecture of a Quaternary rhyolitic caldera volcano that has been the source of at least ten large explosive eruptions in the past 340 ka. Yoshihiko Goto visited CODES in September, working with Jocelyn analysing the results and preparing a manuscript that has been submitted for publication in Geology.

Master of Economic Geology student Billy Beas is working on a volcanology and geochronology project sponsored by Minera La Zanja in northern Peru. His study area includes several high-sulfidation gold deposits, three of which are currently being mined. The district comprises diverse, subaerial, caldera-related rhyolitic ignimbrites, as well as dacitic and andesitic domes and high-level intrusions. In 2014, Billy produced a new map and stratigraphy of the region, and used U-Pb zircon dates to clarify the ages and duration of the main volcanic and mineralising episodes. Billy’s thesis is due for completion in early 2015.

BASALTIC VOLCANOES
Leader: Jocelyn McPhie
Team Members: Rebecca Carey, Vadim Kamenetsky
Students: Jodi Fox, Sam Holt, Naomi Potter, Daniele Vergani
Collaborators: Andrea Di Muro, John Everard, Bruce Houghton, Andrew McNeill, Tim Orr, Matthew Patrick, Michael Poland, Lin Sutherland, James White

Research on basaltic eruptions and their products is underway at five locations: Hawaii (USA), Piton de la Fournaise (Reunion Island), Cape Grim (Tasmania), Heard Island, and Etna (Italy).

Sam Holt’s PhD project is focussing on explosive basaltic eruptions, using samples and other data from recent events on Kilauea, and historic and pre-historic ‘rootless’ littoral eruptions on the flanks of Mauna Loa. Detailed microtextural analyses are being integrated with field and geophysical data in order to understand the primary controls on eruption intensity. This project is being conducted in collaboration with the Hawaii Volcano Observatory.

Daniele Vergani is working on the 2007 eruption of Piton de la Fournaise volcano. The 2007 eruption contrasted markedly from the typical Piton de la Fournaise eruptions in being long-lived (32 days), consisting of both effusive and explosive phases from multiple vents, generating a large volume of deposits, and featuring a rare caldera collapse event. This eruption was very well documented by collaborators at the Piton de la Fournaise Volcano Observatory. Daniele is combining photographic records, geophysics, and data from samples (grainsize, compoenetry, microtextural analyses) to explore the controls on the summit, flank and littoral explosive activity.
Jodi Fox is studying basaltic intraplate volcanism at Cape Grim, northwestern Tasmania, and on Heard Island. Jodi has produced a new geological map of Heard Island using high-resolution satellite imagery and samples available from several expeditions. Selected samples have been submitted for Ar/Ar dating, the results from which will clarify the age of onset and duration of subaerial eruptions from Heard Island vents. Jodi has also mapped and sampled a very well exposed, mainly submarine Tertiary basaltic succession at Cape Grim. She has discovered new field exposures that suggest the current stratigraphy requires revision. This succession will also be dated to clarify both the order and duration of the eruptions.

Honours student Naomi Potter undertook a project on the products of basaltic high fountaining events on Etna, during an eruption in 2013, using a sample set collected by Rebecca Carey. Naomi generated new data on the vesicularity and microtextures that, together with geochemical information from melt inclusion analyses, allowed detailed reconstruction of the degassing history and its links to the eruption dynamics.

CARSON VOLCANIC-HART DOLERITE LIP AND PALEOPROTEROZOIC, MAFIC MAGMATISM OF THE KIMBERLEY BASIN, WESTERN AUSTRALIA

Leader: Karin Orth

Collaborators: Julie Hollis, Christopher Phillips

The Carson Volcanic-Hart Dolerite Large Igneous Province (LIP) project ended in June 2014. Project findings were reported via a poster, a presentation at the Geological Society of Western Australia (GSWA) Open Day, and PICO Presentations at the European Geoscience Union Congress in Vienna, and at the AESC in Newcastle. An annual report, summarising the findings of the project between 2013 and 2014, was lodged with the GSWA in April.

Fieldwork was completed in June and August on a new year-long collaborative research project with GSWA, entitled ‘Paleoproterozoic, mafic magmatism of the Kimberley Basin, Western Australia’. Results from this work, combined with the earlier project, were reported at the GSWA Annual Lectures and at a special one day Kimberley Workshop in Perth in November.

THEME 3 – MAGMATIC-HYDROTHERMAL PROCESSES AND ORES

EXPLORING THE PORPHYRY ENVIRONMENT

Leaders: David Cooke, David Selley

Team Members: Nic Jansen, Sasha Stepanov

Students: Erin Lawlis, Evan Orovan, Marc Rinne, Stephanie Sykora

Collaborators: Benjamin Ackerman, Antonius Bambang, Jannine Cooper, Robert Creaser, Nicholas Fitzpatrick, Richard Friedman, Anthony Harris, Alan Hogg, Fred Jourdan, Fiona Karaut, Roland Maas, Stafford McKnight, Colin McMillan, Paul Napier, Rendy Nurdianto, John Rutter, Daud Silitonga, Dadan Wardiman

The team is working in close collaboration with Newcrest Mining in order to obtain new knowledge and maximise opportunities for the discovery of porphyry and epithermal related gold resources in the South West Pacific region. The team is conducting research that is advancing the conceptual models and exploration techniques at the
relevant deposits and districts. This new knowledge is then passed directly to Newcrest geologists with onsite training. The close working relationship with Newcrest is facilitated by the company’s strong leadership in research, both logistically and financially.

Multidisciplinary research in the Gosowong epithermal district was undertaken by David Selley and Nic Jansen. This work has led to significant advances in the understanding of the stratigraphic and structural evolution of the mineral field, its influence on magma emplacement, hydrological architecture, and ore localisation. Integration of multi-layer datasets within a newly developed 3-D geological model reveals transient magmatic-hydrothermal input to the meteoric-dominant system, and robust geochemical and mineralogical vectors of fluid inflow and outflow. A parallel study of quartz chemistry, led by Sasha Stepanov, provided further evidence for the hybrid character of the mineral system, and chemical fingerprints of fluid outflow.

Student research activities at the Lihir gold mine included Stephanie Sykora’s structural analysis of the so-called ‘anhydrite seal’, and Erin Lawlis’s studies of the Kapit NE ore body. The detailed and systematic methods applied to these studies have provided robust temporal and spatial constraints on the deposit’s complex evolution of volcanomagmatic assembly, and subsequent mechanically- and chemically-induced collapse. This insight has the potential to greatly enhance our understanding of the porphyry-epithermal transition.

Marc Rinne completed his PhD study of the Wafi-Golpu deposit in Papua New Guinea, demonstrating unequivocal genetic links between porphyry Cu, high-sulfidation and intermediate-sulfidation state epithermal gold mineralisation.

Evan Orovan’s PhD study of the Waisoi porphyry Cu-Au deposits in Fiji neared completion. New high-precision geochronology established the absolute ages of mineralisation at each deposit, and allowed for the evolution of mineralisation in the district to be related to the Late Miocene tectonic evolution of Fiji.

OLYMPIC DAM

Leaders: Jocelyn McPhie, Vadim Kamenetsky
Team Members: Maya Kamenetsky, Sebastien Meffre, Jay Thompson
Students: Olga Apukhtina, Alexander Cherry, Glen Deimar, Qiuyue Huang, Irma Vejelyte
Collaborators: Cristiana Ciobanu, Nigel Cook, Ken Cross, Kathy Ehrig, Karsten Goemann, Maria Kirchenbaur, Roland Maas

Research at Olympic Dam seeks to clarify the setting, age and origin of this supergiant Cu-U-Au-Ag deposit. The project was initiated in 2008 with funding from BHP Billiton, which concluded in 2014. Studies so far have generated four papers (three in Geology, one in Economic Geology) and nine confidential reports. Additional manuscripts are in preparation.

Highlights of the year included:

- PhD student Olga Apukhtina completed collection of textural and compositional data on the carbonates, and is preparing a manuscript presenting her findings.
- PhD student Qiuyue Huang completed geochemical and geochronological analyses of picritic and basaltic rocks and dolerite dykes that predate and postdate, respectively, the Olympic Dam Breccia Complex. His results demonstrate a clear correlation with the ~820 Ma Gairdner Dyke Swarm, which is part of the Gairdner Large Igneous Province.
- PhD student Irma Vejelyte is studying the setting of IOCG mineralisation at Wirrda Well, 20 km southwest of Olympic Dam. Irma finished collection of field and analytical data, and began writing her thesis.
- PhD student Alexander Cherry joined the project and began research concentrating on the bedded clastic facies at Olympic Dam.
- The team continued to generate petrographic, mineralogical and geochronological data on all types of rocks present at the site, which should eventually result in a new view on the age and duration of ore-forming events at the deposit.
- A new collaboration was initiated with Cristiana Ciobanu and Nigel Cook from the University of Adelaide.

Ongoing research at Olympic Dam falls under the umbrella of the ARC Linkage Project won by the team and supported by BHP Billiton as the Partner Organisation (2013-2016).
As new, economically viable ore bodies become harder to find, and mining companies venture increasingly deeper to exploit known reserves, the importance and value of ore deposit research has never been greater.
The geology and genesis of low- and high-sulfidation epithermal deposits are being investigated in Australia and in the southwest Pacific region. Research has concentrated on determining the geological and geochemical constraints on the formation of these deposits, which will lead to improved genetic and exploration models.

PhD student Erin Lawlis continued her thesis on the modern geothermal system associated with the low-sulfidation Ladolam Au deposit in PNG. This research is supported by Newcrest.

MSc student Stephanie Sykora continued her research into the structural evolution from porphyry to epithermal conditions recorded by anhydrite veins and cemented breccias at the Lihir Au deposit, PNG. Stephanie won the best student poster award at the Society of Economic Geologists’ conference in Keystone, Colorado. This research is also supported by Newcrest.

A manuscript was submitted to Economic Geology based on the PhD research of Ali Sholeh (Tarbiat Modares University, Iran), who visited CODES in 2012 to undertake petrologic, mineragraphic and LA-ICP-MS analyses. Working with Bruce Gemmell and David Huston (Geoscience Australia), Ali investigated the low sulfidation epithermal gold deposits associated with the Bazman Volcano in the western Makran Volcanic Arc, southeast Iran.

PhD student Hugo Galván graduated. Hugo's thesis was on the epithermal silver-gold-bearing veins at Palmarejo, Guadalupe and La Patria, Chihuahua, Mexico. Hugo’s research was supported by Coeur d’Alene Mines Corporation.

This initiative commenced in June 2011, building on research carried out within AMIRA P765A, which concluded in late 2010. The project was conducted in collaboration with Lakehead University and Imperial College London, and had the support of 20 industry sponsors, making it the largest exploration-based research project in AMIRA’s history. The project concluded in June 2014, with the final sponsors meeting held at CODES.

The aims of the project were to develop and refine new geochemical and geological tools that will help explorers to determine the locations of porphyry and epithermal deposits, discriminate between different styles of mineralisation, and assess the fertility of individual districts. These techniques will assist explorers to detect the subtle hypogene geochemical dispersion halos that extend for kilometres away from the intrusive centre; thereby enhancing their ability to discover new deposits more quickly and at less cost. An additional aim was to develop cost-effective, field-based methods that can be applied by explorers who do not have access to suitable laboratory facilities for LA-ICP-MS geochemical analysis.

The two main environments (lithocap and green rock) that are being explored in porphyry-epithermal districts were further investigated, with the objective of developing new tools for exploration in these areas through the analyses of pre-existing and new sample suites. Blind site testing on one lithocap site and seven green rock sites were used to validate the findings.

Tools developed by the P765A team have proven to work effectively in volcanic terrains, but have not been tested effectively in other environments. Therefore, an important component of the research was to investigate the effects on various protoliths (limestones, sandstones, granite, etc.), as well as on mineralised and un-mineralised regionally metamorphosed terranes. Since project commencement, field campaigns have been conducted in Australia, USA, Canada, Indonesia, Chile, Peru, Panama, Colombia, Scotland, the Philippines and Argentina.

In November 2014, the P1060 research team was awarded the UK-based 2014 Institution of Engineering and Technology (IET) Innovation Award in the ‘Measurement in
Action’ category, for ‘Laser ablation analysis for enhanced discovery of buried mineral resources’, based on research from the AMIRA P765, P765A and P1060 research projects.

A new project that builds on the success of P1060 and its predecessors is scheduled to commence in June 2015. The overall aim of this new initiative is to help project sponsors discover porphyry and/or epithermal deposits. This will be achieved through the development of new geochemical and geological tools and the application of previously developed tools that can help to:

- Determine the locations of porphyry and epithermal deposits.
- Discriminate between different styles of mineralisation.
- Assess the fertility of individual districts.

THEME 4 – BASIN PROCESSES, OCEAN CHEMISTRY, AND ORES

MCARTHUR BASIN COPPER PROJECT

Leader: Garry Davidson
Team Members: Stuart Bull, David Selley
Student: Larriana Morgan
Collaborators: Dorothy Close, Andrew Wygralak

This project began in mid-late 2014, sponsored wholly by the Northern Territory Geological Survey (NTGS), with the aim of developing an understanding of a number of clusters of copper mineralisation in the central western McArthur Basin. Initially, the research will exclude the Redbanks deposits, because they have been the focus of previous academic studies. The hypothesis to be tested is that these sites originated as part of a separate basinal fluid event to that which formed the giant HYC Zn-Pb-Ag deposit in the McArthur Group. The copper sites largely sit lower in the stratigraphy in the Tawallah Group, and the lowermost McArthur Group, with a particular concentration in the Amelia Dolomite and Mallapunyah Formation.

Fieldwork commenced with core logging by Larriana Morgan and Stuart Bull at the NTGS facilities in Darwin, focussing on samples from the Coppermine Creek area.

KANSANSHI GOLD PROJECT

Leader: Robert Scott
Team Member: Garry Davidson
Student: Jacob Heathcote
Collaborator: David Wood

This project began in early 2014, sponsored wholly by Kansanshi Mining Plc (KMP), a subsidiary of First Quantum Minerals. The aim of the research is to better understand the origins, distribution, mineral associations and paragenesis of gold at the Kansanshi Cu-Au deposit, northwestern Zambia. The Kansanshi Mine, situated in the Domes region of the Lufilian fold belt, currently produces over 100,000 oz of gold per year as a by-product of the copper mining operation. The high gold content of the Kansanshi ores is atypical of sediment-hosted copper deposits of the Central African Copperbelt (CACB). The post-peak metamorphic timing of mineralisation at Kansanshi also differs from classical copper deposits of the CACB.
This research is investigating the timing and distribution of gold (relative to copper) and deposit-scale controls, and processes and mineralogical associations of both primary and secondary (i.e. oxide-zone) gold mineralisation at Kansanshi. A key objective is to identify pit-scale criteria (alteration mineral assemblages, structures, vein stages/compositions, etc) or trends that aid delineation of gold mineralised zones. These characteristics will underpin development of a set of parameters that can be used by KMP resource and production geologists to better recognise and predict the distribution of gold mineralised zones at Kansanshi.

Jacob Heathcote commenced fieldwork in late April, which involved detailed mapping and sampling in the Main and Northwest pits, and sampling of selected drill cores. Jacob’s subsequent work has included detailed petrography (optical microscopy) on over 50 samples with follow-up SEM MLA, EMPA and laser Raman studies, as required. Initial findings include identification of a previously unrecognised paragenetic/mineralogical association of gold at the deposit, which appears to represent the main (primary) influx of gold in some of the higher grade (Au) samples studied to date.

GLOBAL OCEAN CHEMISTRY, MARINE BASINS AND MINERALISATION

Leader: Peter McGoldrick
Collaborators: Tim Lyons, Noah Planavsky, Donna Satterthwait

The project aims are to:

- Decipher processes that controlled the sulfur chemistry and redox state of oceans that existed in northern Australia approximately 1.65 billion years ago.
- Understand how coeval ocean water interacted with hydrothermal fluids responsible for forming the giant northern Australian Proterozoic SEDEX Zn-Pb-Ag deposits.
- Understand the role played by (micro-)organisms during seafloor venting of fluids responsible for forming Proterozoic sedimentary Zn mineralisation.

The main activity in 2014 was the preparation, submission and acceptance of a paper in Science (Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals). The study used Cr isotope data from mid-Proterozoic ironstones to place a robust upper limit on atmospheric O₂ during the mid-Proterozoic.

This project has come to a conclusion in its current form, but some elements of the research will continue as smaller projects within this Module, such as the extraction and documentation of fossils from the Century Zn deposit.

URANIUM CONCENTRATION IN BASINS

Leader: Garry Davidson
Team Members: Sebastien Meffre, Karin Orth
Student: Pablo Farias
Collaborators: Karsten Goemann, Hamish Johns, Penny Large, Grant Osborne, Andrew Wygralak

This project is researching the special occurrence of uranium in particular sedimentary basins, and encompasses studies that began within the previous Program structure at CODES.

Highlights of the year included:

- A paper was published in Mineralium Deposita, lead-authored by Karin Orth, on the timing of ore formation in the U-PGE-Au Coronation Hill deposit, South Alligator Rivers Province, Northern Territory (NT).
- A paper featuring U mobility along faults within the Paleoproterozoic Tennant Creek Inlier, NT, was submitted by former Honours student Hamish Johns, and co-authors.
- Pablo Farias commenced a Master of Economic Geology project focussed on the Angularli U mineralisation in the East Alligator Rivers Province. This is an unmined zone of mineralisation, with diverse geology, that appears to be a new variant of U-forming activity in the McArthur Basin, NT.

LA-ICP-MS images of trace elements (0.5mm across), including chromium, for Sherwin Formation oolitic ironstones.
TRACE ELEMENTS IN THE OCEAN (TEO)

Leader: Ross Large

Team Members: Leonid Danyushevsky, Dan Gregory, Jacqui Halpin, Elena Lounejeva, Sebastien Meffre, Jeff Steadman

Students: Sean Johnson, Charles Makoundi, Indrani Mukherjee

LA-ICP-MS studies of hydrothermal pyrite chemistry, focussed on ore genesis and exploration applications, has enabled a whole new line of research on some of the more fundamental issues relating to ocean chemistry through time.

Sedimentary pyrite formed in the water column, or during diagenesis in organic muds, provides an accessible proxy for seawater chemistry in the marine rock record. Except for Mo, U, Ni and Cr, surprisingly little is known about trace element trends in the deep time oceans; even though they are critical to developing better models for the evolution of the Earth’s atmosphere and evolutionary pathways of life.

In this project, the team has developed a novel approach to simultaneously quantify a suite of trace elements in sedimentary pyrite from marine black shales. These trace element concentrations, at least in a first-order sense, track the primary elemental abundances in coeval seawater. This has never been achieved before.

In general, the trace element patterns show significant variation of several orders of magnitude in the Archaean and Phanerozoic, but less variation on longer wavelengths in the Proterozoic. Certain trace elements (e.g., Ni, Co, As, Cr) have generally decreased in the oceans through the Precambrian, while other elements (e.g., Mo, Zn, Mn) have generally increased, and a further group initially increased and then decreased (e.g., Se and U). These changes appear to be controlled by many factors.

This research demonstrates that Ni and Co content of seawater is affected by global Large Igneous Province events, whereas redox sensitive trace elements, such as Se and Mo, are affected by atmosphere oxygenation. A flat to declining pattern of many biologically important nutrient elements through the mid to late Proterozoic may relate to declining atmosphere O₂, and supports previous models of nutrient deficiency inhibiting marine evolution during this period. These trace elements (Mo, Se, U, Cu and Ni) reach a minimum in the mid Cryogenian and rise abruptly toward the end of the Cryogenian, marking the position of a second great oxidation event (GOE2).

PhD student Indrani Mukherjee, analysing sedimentary pyrite in black shales for sulfur isotopes at the SHRIMP laboratory at ANU.
PhD student Indrani Mukherjee conducting field work in NW Tasmania.
A paper providing the first phase results of the project was published in *Earth and Planetary Science Letters*. Two further manuscripts were submitted on the second phase results.

THEME 5 – THE ORE AFFECTED CRUST

THE POWER OF PYRITE

Leader: Ross Large
Team Members: Ivan Belousov, Leonid Danyushevsky, Dan Gregory, Jeff Steadman
Collaborator: Trevor Beardsmore

Several projects developing the use of LA-ICP-MS chemistry of pyrite as a fertility and vectoring tool are currently being pursued.

A major collaboration with the Geological Survey of Western Australia has analysed over 1,500 pyrites from 30 orogenic gold deposits and five VHMS deposits, plus barren rocks, to develop protocols and parameters for pyrite use in both fertility discrimination and vectoring to ore centres. The resulting database provides the basis for using pyrite as a prospective fertility and vectoring tool, and enables a better understanding of the geochemical associations of different orogenic Au and VHMS deposits.

The data indicates that pyrites from orogenic gold deposits commonly have higher levels of Ni, As, Au, W, V and Cr, compared with pyrites from VHMS deposits, which generally have higher levels of Cu, Co, Pb, Se, Zn, Sn and Bi. The differences may relate to source rocks and differences in salinity, temperature and pH of the ore fluids. These differences in pyrite chemistry are used as the basis for developing fertility and vector scores for both VHMS and orogenic pyrite, and enable any pyrite drill intersection to be classified as background, distal, proximal or a high priority target. A high priority VHMS target has been defined for follow-up by applying this pyrite vectoring technique to six recent co-funded EIS drill holes in WA.

The three isotopes of lead, 206Pb, 207Pb and 208Pb, have been measured by LA-ICP-MS on each pyrite at the same time as the multi-element analysis. This enables rapid scan Pb isotope ratio analysis for 207Pb/206Pb and 208Pb/206Pb, and provides information on the timing of the hydrothermal system and potential for younger overprint hydrothermal activity.

The combination of pyrite laser multi-element analysis and scan Pb-isotopes on the same pyrites provides robust fertility and vector indicators for pyrite intersections in drill holes. The technique is relatively inexpensive compared to the cost of a drill hole. Costs are around $2,500 per drill hole (assuming a 500m hole with 5 pyritic zones sampled and 50 pyrite analyses for 35 elements, including Pb-)
isotope ratios). This is about 30% of the cost for a down-hole EM survey. Both techniques have the potential to detect distal off-hole anomalies. A report was delivered to GSWA outlining the results of the project.

Following on from the success of this project, a new industry funded project is in the development stage to apply the Power of Pyrite technique on a series of mine and exploration case studies. The new project will investigate extending the vectoring protocols to VHMS, sedimentary Cu, sediment-hosted gold and SEDEX/MVT deposits. A project agreement has also been signed with the Geological Survey of South Australia to investigate the application of the technique to a number of sites in South Australia.

INTEGRATED GEOLOGY AND GEOPHYSICAL MODELLING AND EXPLORATION TARGETING IN THE LYELL-ROSEBERY REGION

Leader: Anya Reading
Team Members: Daniel Bombardieri, Michael Roach
Student: Jie Yu
Collaborators: Tim Chalke, Mark Duffett

This collaborative project with Mineral Resources Tasmania (MRT) aims to improve knowledge of prospective regions of western Tasmania using an integrated approach.

New geological mapping by MRT is underway, and new geophysical data were collected as part of Jie Yu’s Honours project. A major research exercise by Daniel Bombardieri has combined vast amounts of diverse geological knowledge into one 3D GOCAD environment. This information has been subjected to a rigorous analysis process and includes key metadata incorporating petrophysical properties and confidence criteria. This has resulted in a major research output, a new 3D geological and geophysical model of the Lyell-Rosebery region. The new model is exceptional in its level of detail and the care with which balanced cross-sections, for example, have been used as constraints to sub-surface structure. The model will be refined in ongoing work in 2015 and is available through MRT to aid mineral exploration and economic growth in western Tasmania.

METAMORPHIC ARCHITECTURE OF THE WESTERN GAWLER CRATON

Leader: Jacqui Halpin
Collaborators: Rian Dutch, Anthony Reid

The generation and preservation of hydrothermal or magmatic-related mineral systems is strongly depth dependent. This is because major changes in fluid pressure and composition occur as deeper magmatic or metamorphic fluids interact with other fluids and structures as they reach shallower crustal levels. These changes in fluid chemistry result in the precipitation of ore minerals. This project, sponsored by the Geological Survey of South Australia (GSSA), involves quantification of the pressure-temperature-time (P-T-t) history of selected key regions across the western Gawler Craton that can be used to infer crustal architecture and quantify crustal palaeo-depths. Outputs can be fed into prospectivity models to inform the practice of exploration. A preliminary report was delivered to GSSA in 2014, which is summarised as follows:

The deeply buried and sparsely sampled western Gawler Craton remains poorly understood in terms of gross crustal architecture and tectonic evolution. Work to date on the Christie Domain has concentrated on the P-T-t evolution of high-grade metapelitic gneisses of the Archean-Early Paleoproterozoic Mulgathing Complex (the Christie Gneiss). New in situ monazite dating suggests high-grade metamorphism and anatexis occurred between 2470 ± 4 Ma and 2437 ± 5 Ma, with near-peak conditions at 2460 ± 4 Ma at Challenger, Blackfellow Hill and Mt Christie during the Sleafordian Orogeny. Phase equilibria modelling suggests peak metamorphic conditions reached P ~ 6-7 kbar at T ~ 800-860 °C across this region. These conditions represent paleodepths of ~20-25km and elevated average thermal gradients of 35-45°C/km at ~2.46 Ga. Heat conduction through thinned lithosphere during extension, coupled with heat advection through repeated magma flux, primed the basin for focussed deformation during inversion. Orogenesis thickened the previously thinned crust to close to normal thickness, such that limited post-peak decompression occurred and the P-T path was dominated by cooling.
APPLICATION OF CARBONATE C-O ISOTOPE TO ORE GENESIS AND EXPLORATION
Leader: Garry Davidson
Team Members: David Cooke, Craig Winter
Collaborators: James Cleverley, Hesham Harbi, June Hill, Michael Nugus, Nick Oliver, Heidi Pass

While carbonate-based C-O isotopes are well accepted tools in ore genesis research, this project is aimed at identifying hidden, nuanced applications, by combining mineral-specific C-O isotope data with spatial and paragenetic control, major and trace element analyses, and whole-rock geochemical data.

A sub-project involving this style of work is a study, funded by AngloGold Ashanti, of C-O isotope variation in the Sunrise Dam gold deposit in the Archean Yilgarn of Western Australia. In 2014, the main activity was hyperspectral analysis of carbonate composition for samples that have previously been analysed for C-O isotopes. The data from this analysis was then compared with sparse electron microprobe data, and particularly with carbonate staining for chemical composition. The aim was to determine whether a ready proxy for the C-O isotope signal could be developed to assist exploration.

A second application involved C-O analysis of gold deposits and prospects through the Late Proterozoic to Cambrian arc sequences of Saudi Arabia, with a view to developing a better understanding of the affinities of this mineralisation (magmatic, VHMS, orogenic gold, etc). This work was published in Ore Geology Reviews during the year (Harbi et al).

A third application was Heidi Pass’s contribution to the ‘alkalic porphyry’ special issue of Economic Geology, in which C-O isotope data was modelled as part of the evidence to support a carbonate assimilation model to account for the highly carbonated character of the British Columbian Mt Polley Cu-Au deposit, Canada.

AUSTRALIAN HYDROTHERMAL IOCG AND RELATED DEPOSITS
Leader: Garry Davidson
Team Members: Stuart Bull, David Cooke, Sebastien Meffre, Jay Thompson
Student: Subira Sharma
Collaborators: Bryan Bowden, Robert Creaser, Geoff Fraser, Hamish Freeman, Thomas Rodemann, Roger Skirrow, Pat Williams

The principal areas of IOCG research in 2014 were at Prominent Hill (SA) and Mt Dore-Merlin (QLD). NB. Research on the giant Olympic Dam deposit is reported under its own project heading.

Prominent Hill
The main activity relating to Prominent Hill was the submission of a paper to Mineralium Deposita on the Ar-Ar systematics (and supporting U-Pb zircon, monazite and apatite systematics) of a carefully selected sample set designed to constrain the age of sericite at the Cu-Au deposit, which is closely related to the emplacement of Cu-Au mineralisation. Work also continued on the interpretation of Re-Os data from Prominent Hill, produced by Robert Creaser’s U Alberta lab, based on a diverse range of mineralised and barren samples.

Mount Dore-Merlin
Subira Sharma’s PhD study continued, this year focussing on the role of graphite at the Merlin Mo-Re deposit within the Cloncurry IOCG belt. The laser Raman equipment housed in the UTAS Central Science Laboratory (CSL) has proven to be extremely useful for evaluating graphite-molybdenite mixes and determining the crystallinity of the graphite. Subsequently, Thomas Rodemann from CSL, who is an expert in this equipment, has been inducted into the project group.
THEME 6 – DATES AND PLATES

AGE, AFFINITY AND PROVENANCE OF TASMANIAN PROTEROZOIC METASEDIMENTARY SUCCESSIONS

Leader: Jacqui Halpin
Student: Jacob Mulder
Collaborators: Grace Cumming, Nathan Daczko, John Everard

This project grew from the successful application of combined authigenic monazite and detrital zircon dating in constraining the depositional age of the Proterozoic Rocky Cape Group in NW Tasmania, which culminated in 2014 with a paper (Halpin et al.) in Precambrian Research and a presentation at the Australian Earth Sciences Convention in Newcastle.

This approach will now be used for poorly dated Proterozoic units and inliers elsewhere in western Tasmania, including (Rocky Cape Group correlated) siliciclastic successions at Woolnorth and the Clark Group in the Jubilee region, as well as in the turbidite-dominated Oonah Formation and correlates.

During 2014, the provenance of the Rocky Cape Group was examined through palaeocurrent and detrital zircon (including Hf-isotope) analysis as part of Jacob Mulder’s PhD project. These results indicate that the Rocky Cape Group was sourced from a combination of basement terranes exposed in southwest Laurentia and under ice-cover in East Antarctica (the Mawson Craton), suggesting close proximity of these blocks between 1.45—1.3 Ga.

This study presents a new model for the configuration of Nuna that includes Proterozoic Tasmania, and suggests that extension during the breakup of Nuna left thinned continental substrate between the Mawson Craton and southwest Laurentia, onto which the Rocky Cape Group was deposited prior to ~1.3 Ga.

TECTONIC RECONSTRUCTION OF EAST GONDWANA

Leader: Jacqui Halpin
Students: Sally Watson, Toban Wild
Collaborators: Mike Coffin, Nathan Daczko, Robyn Gardner, Andy Gleadow, Fred Jourdan, Barry Kohn, Chris Mays, Luke Milan, Pat Quilty, Jeff Stilwell, Joanne Whittaker, Simon Williams

This project aims to constrain the age and affinity of recently recovered dredge samples from enigmatic tectonic features in the Perth Abyssal Plain, offshore Western...
Australia, and to integrate these data with other geological and geophysical datasets to produce a holistic plate tectonic reconstruction for East Gondwana.

During 2014, a paper (Gardner et al.) on the age and affinity of one of two newly discovered submarine microcontinents was accepted for publication in Gondwana Research. This study demonstrates, for the first time, that the Gulden Draak Knoll comprises a rifted continental fragment of East Gondwana. A revised tectonic reconstruction suggests that the Gulden Draak Knoll is part of the Indian conjugate to both the Antarctic Wilkes Land margin, and Australian Naturaliste Plateau, and sits along strike of a major structure termed the Indo–Australo–Antarctic Suture, recently mapped from geophysical interpretations in Antarctica.

Other major outcomes during 2014 included an invited talk (Whittaker et al.) on these results presented at EGU in Vienna, the commencement of a new PhD project (Sally Watson) on the evolution of East Gondwana breakup and the influence of the Kerguelen plume, and a collaboration with Monash University through the completion of an Honours project by Toban Wild, which provides fascinating new insights into the palaeontology and palaeoecology of a fragment of Greater India.

STRUCTURE OF SE AUSTRALIA USING MULTIPLE GEOPHYSICAL METHODS

Leader: Anya Reading
Team Member: Michael Roach
Students: Ashby Cooper, Simone Pilia
Collaborators: Ross Cayley, Nick Direen, Mark Duffett

Funded under ARC Linkage, through the UTAS Discipline of Earth Sciences, this project seeks to improve the understanding of the broad-scale structure of SE Australia.

In previous years, seismic stations were installed surrounding Bass Strait for the collection of ambient seismic and teleseismic data. During 2014, the seismic tomography and other geophysical datasets were processed and combined to form new 3D images of the Australian continent in this region. This work was carried out at Australian National University with PhD student Simone Pilia, who graduated during the year. A paper has been accepted for publication in Gondwana Research.

Analysis of deep crustal structure was carried out by UTAS Honours student Ashby Cooper. The project effectively shows how the Victorian and Tasmanian crust is connected and proves the success of ambient seismic techniques in improving the resolution of regional scale seismic tomography. Partner organisations in the research were Mineral Resources Tasmania, Geoscience Victoria and FrOGTECH.

LOOKING FORWARD

The coming year will be a period of further evolution for the Module. While a number of projects are scheduled to come to a natural conclusion, new projects will continue to come on stream, and some of the existing studies are expected to find a new lease of life, following adjustments to align the research objectives with the evolving needs of the minerals industry.

One of the main highlights will be the commencement of the AMIRA P1153 project, entitled ‘Applying the explorers’ toolbox to discover porphyry and epithermal Cu, Au and Mo deposits’. The project, which builds on the success of AMIRA P1060 and its predecessors, will be launched via a start-up meeting in June.

Negotiations with industry sponsors are in progress to extend the excellent research conducted within the Ore Deposits of SE Asia project, via a new initiative to investigate the tectonics and origin of Cu-Au mineralisation of the Western Myanmar-Sumatra Terrane.

A petrophysical and geophysical investigation begins in 2015, which aims to improve the knowledge of the broad-scale structure of NW Tasmania. The study is to be conducted in collaboration with Mineral Resources Tasmania and Mira Geoscience.

Many of the existing projects are expected to have a fruitful year. Anticipated activities include:

- Major sample collection and mapping of copper mineralisation and surrounding alteration will be undertaken in the McArthur Basin, in collaboration with the Northern Territory Geological Survey.
- Rebecca Carey will be Co-Chief Scientist on an expedition to the Havre Volcano in the Kermadec Arc, New Zealand, which aims to investigate the seafloor deposits of a remarkable submarine eruption that occurred in 2012, which turned out to be the largest event of its type ever recorded.
- A new PhD project related to the ‘VHMS Research – Ancient’ project will commence at Myra Falls, Vancouver Island.
- New industry funded research is in the development stage to apply the Power of Pyrite technique on a series of mine and exploration case studies, and investigate extending the vectoring protocols to VHMS, sedimentary Cu, sediment-hosted gold and SEDEX/MVT deposits.
- A regional map will be produced of the metamorphic grade for the central-northern Gawler Craton, which will be used as a tool for future exploration.
- A seismic tomography study will be completed, incorporating data from a wider region of SE Australia and final analysis of the Bass Strait deep structure.
OBJECTIVE
To transform how explorers and miners plan and predict mining and environmental activities, by providing new tools to guide these activities from the initial discovery stage through the life of the project.

INTRODUCTION
Geometallurgy is the integration and utilisation of geological, metallurgical, environmental and economic information to maximise the value of an ore body, while minimising technical and operational risk. Through a holistic approach, it identifies attributes that contribute to the realised value of a resource, and enables ore variability to be factored into the flow sheet, infrastructure design, and the production and quality forecasts over the life-of-mine. This includes traditional attributes, such as grade, as well as less traditional factors such as concentration of deleterious elements, hardness (crushability, grindability), mineral species and abundance, mineral liberation, metallurgical recovery, acid generating potential, neutralising potential and smelter enabling characteristics.

Geometallurgy uses integrated tools, methods and knowledge, with an emphasis on ore body knowledge, which can be utilised in mining and mineral processing. A key component is linking geology and mineral processing as inputs into mine planning, optimisation and ultimately valuation.

Over the past decade, the extent of research related to geometallurgy has significantly increased, spurred mainly by an increased interest in the discipline by the minerals industry.

HIGHLIGHTS
- Geometallurgy included as a theme in the new Industrial Transformation Research Hub – Transforming the Mining Value Chain.
- CODES is an Essential Research Participant in the CRC ORE II application.
- Significant technology transfer of GeM® research, including presentations in Australia, the UK, and Chile; plus a short course in South Africa. Confidential research reports also released to sponsors for the Los Bronces and Frieda River case studies, which were conducted in collaboration with CRC ORE.
- Fieldwork conducted in collaboration with CRC ORE to identify future opportunities in the geom-environmental field.
- Geometallurgy included as part of the Geo-logging short course.
- Julie Hunt appointed Module Leader – Ron Berry retained as part of the team as a University Associate.
- Graduation of MSc student Paula Montoya.

This increase in industry involvement led to the large AMIRA P843 and P843A (GeM®) collaborative projects that ran from 2005 to 2013 and were successful in developing an array of geometallurgical methods and protocols in the areas of mineralogy, comminution and flotation – which were subsequently tested on case study sites in active mines.

Although the GeM® project has come to a successful conclusion, this work is continuing to be developed within the Geometallurgy Module. A large part of this research will be carried out under the Quantifying Geometallurgical Characteristics Theme, which is one of the three themes established within the new Industrial Transformation Research Hub – Transforming the Mining Value Chain.
THE YEAR IN REVIEW

A PERIOD OF TRANSITION

The past year has been a period of transition for geometallurgy at CODES. The AMIRA Geometallurgical Mapping and Mine Modelling (GeM³) project had officially ended the previous year, which happened to coincide with the end of CODES funding as an Australian Research Council Centre of Excellence, and the retirement of the leader of the Recovery Program, Ron Berry.

Initially, there was an expectation that GeM³ could continue via a further extension project. However, after a thorough review by all stakeholders, it was decided that the project had achieved all its major objectives, and the time was right to move on to other challenges. The achievements of this initiative have been covered in detail in previous annual reports, but in summary the project successfully delivered a number of key benefits to industry partners, including improved forecasting, reduced technical risk, enhanced economic optimisation of mineral production, and more efficient use of the resource.

At the completion of its tenure as a funded Centre of Excellence, CODES decided to reassess its research model. Key objectives were to ensure that all the well established and valued research capabilities were maintained, while enhancing the structure to better reflect the Centre’s strengths. The review resulted in an end to the old five program system, with the introduction of a four module model to take its place. As testimony to the success of GeM³, and the importance CODES places on this area of research, Geometallurgy was named as one of the four modules, alongside Ore Deposits: Characterisation and Context, Enabling Technologies, and Training.

STRONG PLATFORM

COLLABORATIONS

The establishment of the Geometallurgy Module sets a strong platform to build on the success of GeM³, and the large number of collaborations established over eight highly successful years of applied research. One of the strongest of these collaborations has been with CRC ORE, primarily due to its close relationship with UTAS via the Discipline of Earth Sciences. For example, Geometallurgy Module team member, Ron Berry, was a member of the CRC ORE Technical Advisory Panel during the year, and a number of CODES staff and students are actively involved in its research projects.

As a testament to this close relationship, CODES has been included as an Essential Research Participant in CRC ORE’s application to extend its tenure as a Co-operative Research Centre by six years. The key challenge for CRC ORE II will be to address the declining productivity in the minerals industry, which is partly due to the propensity for mining companies to focus on quantity over quality during
the previous mining boom. CODES expertise in areas such as ore deposit modelling, postgraduate training and ore characterisation will play a key role in the CRC, pending a successful outcome to the application.

The research performed by CRC ORE II will be split into five programs: Define, Separate, Extract, Control, and Operate, with CODES working within the Define Program, which has the main objective of improving feed quality. The foundation research partner in this program is the CSIRO, and fellow research partners include the University of Adelaide and the National Research Council Canada.

In addition to the links with CRC ORE, strong collaborations have been established with over 20 companies and institutions over the life of GeMIII, which will continue to be fostered in the years ahead.

THE ARC INDUSTRIAL TRANSFORMATION RESEARCH HUB

A significant event for the Geometallurgy Module during 2014 was the awarding of one of the Australian Research Council's Industrial Transformation Research Hubs to CODES and a group of its research partners. Quantifying Geometallurgical Characteristics is one of only three themes within the Hub, which is named Transforming the Mining Value Chain. While the new Hub covers a wide spectrum of mining processes, geometallurgy will play a key role in its activities. This will include geometallurgical and geo-environmental characterisation of ores and wastes through automated core logging and spectral analysis of drill core. This will enable 3-D exploration, mining and geometallurgical models to be developed that are continually updated as the exploration or resource drilling program continues.

The Hub was in the process of confirming sponsors and performing preparatory work in 2014, but is expected to be fully operational by mid-2015.

TECHNOLOGY TRANSFER

Although the GeMIII project ended in mid-2013, the process of transferring the knowledge and expertise developed during the project's long life cycle continued during the year. Examples of this knowledge transfer included:

- Ron Berry and Julie Hunt presented a poster at the Australian Earth Sciences Convention in Newcastle, entitled 'Non-destructive geometallurgical logging for prospect evaluation'.
- Ron and Julie also joined forces at Geometallurgy 2014 in London, where they presented a paper on 'Core logging, chemistry, mineralogy and small-scale hardness tests to estimate comminution indices'.
- PhD student Angela Escolme attended the International Conference in Geometallurgy in Santiago, Chile, where she presented a poster on her thesis studies involving ore characterisation and geometallurgical modelling at the Productura copper-gold-molybdenum deposit in Chile.
- Also in Chile, Ron Berry and Julie Hunt teamed up with Dee Bradshaw from JKMRC/UQ, and Will Goodall and Al Cropp from MinAssist, to present ‘Communicating and integrating geometallurgical data along the mining value chain’ at the International Mineral Processing Congress in Santiago.

A number of confidential research reports were presented to industry, including those related to the controls on geochemistry and mineralogy deportment by size at Anglo American’s Los Bronces deposit in Chile, and PanAust’s Frieda River operation in Papua New Guinea. These studies were conducted via collaborations with CRC ORE.

Below: Processing plant at Renison tin mine, Tasmania.
SHORT COURSES

The Geometallurgy Module members provided significant inputs to two short courses during the year. The inaugural Geo-logging course was held in September at Mineral Resources Tasmania (MRT), with Julie Hunt and Ron Berry leading a session that demonstrated a range of techniques and equipment that could be used on drill core to obtain data related to ore characterisation. The course was led by CODES in collaboration with MRT and the local branch of GHD – an international professional services company.

The second input was made as part of the Acid Rock Prediction short course at the University of Cape Town, South Africa, in November, where Julie Hunt, Anita Parbhakar-Fox (CRC ORE), and Bernd Lottermoser (University of Exeter, UK / CRC ORE) presented talks on the geometallurgical aspects of this field of research. The course formed part of the Process Mineralogy ‘14 conference.

POSTGRADUATE RESEARCH

MSc student Paula Montoya, who finished her studies the previous year, graduated during 2014. Paula was supported by AngloGold Ashanti for her project involving a case study related to comminution research at the La Colosa porphyry gold deposit in Colombia.

PhD student Angela Escolme continued with her project entitled: Predicting recovery in porphyry deposits: A geological perspective. As reported earlier, Angela presented some of her findings at the International Conference in Geometallurgy in Santiago, Chile.

New PhD student, Cassady Harraden, joined the team late in the year. Cassady’s project is under negotiation with potential sponsors.

LOOKING FORWARD

The coming year is expected to see a significant increase in activities within the Geometallurgy Module as it continues its transition into developments post GeM³. The close collaboration with CRC ORE will continue to play a key role in research projects, particularly those related to the environmental aspects of the discipline. Fieldwork has been conducted recently in conjunction with CRC ORE to identify potential collaborative projects in this area, and a number of opportunities will be further investigated in 2015.

Providing the application for CRC ORE II is successful, collaborations with the CRC will increase even further from mid-2015, specifically in the areas of ore deposit modelling, postgraduate training and ore characterisation. As an Essential Research Participant, CODES will work alongside other world class organisations, including the Institute for Photonics and Advanced Sensing (IPAS) at the University of Adelaide. This collaboration will utilise CODES expertise in ore geology and mineralogy, plus its extensive library of reference materials for a range of ore deposit types, to conduct a rock sensing project using the latest laser technology.

The Geometallurgy Module will continue to focus on research related to geometallurgical characterisation of different deposit types. This research is expected to increase appreciably when the Industrial Transformation Research Hub – Transforming the Mining Value Chain – is fully operational, which is scheduled for the middle part of the year.

With confidentiality agreements on the GeM³ project due to expire early in 2015, the impartation of the innovating and groundbreaking findings of this research is expected to continue and increase during the latter half of 2015.
GEOMETALLURGY IS THE INTEGRATION AND UTILISATION OF GEOLOGICAL, METALLURGICAL, ENVIRONMENTAL AND ECONOMIC INFORMATION TO MAXIMISE THE VALUE OF AN ORE BODY, WHILE MINIMISING TECHNICAL AND OPERATIONAL RISK.

Ball mills at Renison tin mine, Tasmania.
 OBJECTIVES
Research activities within the Module are aimed at developing new analytical techniques and new computational algorithms for big data knowledge discovery, the modelling of crystallisation and melting processes, and analytical data reduction; thereby ensuring that the research is driven by innovative technology and CODES is at the cutting edge of analytical and computational developments of relevance to ore deposit research.

The Module also aims to provide CODES research staff and students with access to state-of-the-art micro-analytical equipment within Australia and overseas, and maintain their awareness of new analytical developments.

 INTRODUCTION
The Enabling Technologies Module explores and develops novel analytical and data interpretation techniques based on the latest technological and algorithmic developments, such as a number of high spatial resolution microprobes and big data knowledge discovery techniques. This helps in the understanding, exploration and exploitation of deep earth resources.

Current research projects focus predominantly on expanding the capabilities of laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS) for geological applications, development of algorithms for big data knowledge discovery, modelling of geological processes, analytical data reduction, and the development of new, user friendly software packages.

The analytical projects using LA-ICP-MS include in-situ multi-element analysis and imaging of element distribution within minerals; in-situ isotope analysis, focusing on a range of U-Pb dating applications and Pb isotope measurements; development of calibration standards; and technological developments aimed at enabling simultaneous analysis by LA-ICP-MS and laser-induced breakdown spectroscopy (LIBS).

The computational projects include target generation from data-driven computations, computational knowledge discovery from high-dimensional (high-D) data, modelling of melting and crystallisation, and geodata visualisation.

Many of the projects involve close collaborations with national and international research groups and equipment manufacturers.
The main focus in 2014 was on understanding fundamentals of LA-ICP-MS and developing new algorithms for big data knowledge discovery and analytical data processing.

Analytical developments included:

- Utilising a femtosecond pulse width laser to further investigate the ablation processes of sulfide minerals, in collaboration with ETH Zurich.
- Developing increased understanding of how laser aerosols are broken down, ionised and detected in the ICP-MS system.
- Developing techniques for manufacturing a new calibration standard for sulfide analysis characterised by better homogeneity of Se, Ti, Au and Pt.
- Precise measurements of laser ablation crater depths in zircon leading to a better understanding of current limitations of accuracy of the LA-ICP-MS technique and how to improve on these limitations.

Computational developments included:

- A comprehensive review paper on big data machine learning techniques to gain new understandings of lithology and geological contact mapping, published in Computers and Geosciences.
- A new technique for incorporating spatial context into data-driven lithology prediction.
- A new computer application for the animated visualisation of big data.

Module Leader, Leonid Danyushevsky, was elected as a Fellow of the Mineralogical Society of America (MSA). Fellows are appointed on the basis of having contributed significantly to the advancement of geochemistry, petrology, or allied sciences. Less than 3% of past Fellows have been from Australia, and Leonid is the first Tasmanian to receive this highly prestigious honour.
MEET THE TEAM

LEADER:
Leonid Danyushevsky

TEAM MEMBERS:
Ivan Belousov, Matt Cracknell, Sarah Gilbert, Elena Lounejeva, Sebastien Meffre, Paul Olin, Anya Reading, Sasha Stepanov, Jay Thompson

PHD STUDENTS:
Sarah Gilbert, Stephen Kuhn, Elena Lounejeva, Peter Morse

COLLABORATORS:
AGILENT TECHNOLOGIES
David Death, Fred Fryer, Toshiaki Matsuda, Paul Perry

AUSTRALIAN NATIONAL UNIVERSITY
Malcolm Sambridge

ETH ZURICH, SWITZERLAND
Detlef Günther, Joachim Koch, Daniel Tabersky

GEOSCIENCE AUSTRALIA
Patrice de Caritat

IOWA STATE UNIVERSITY, USA
Sam Houk

LAURIN TECHNIC
Michael Shelley

MINERAL RESOURCES TASMANIA
Ralph Bottrill, Mark Duffett, Kyen Knight, Andrew McNeill, Richie Woolley

MOSCOW STATE UNIVERSITY, RUSSIA
Alexey Ariskin, Pavel Plechov

NEWCREST MINING
Anthony Harris

NORRIS SOFTWARE
Ashley Norris

QUEENSLAND UNIVERSITY OF TECHNOLOGY
Charlotte Allen

RIO TINTO
Paul Agnew, Alan Kobussen

UNIVERSITE DU QUEBEC A CHICOUTIMI, CANADA
Dany Savard

UNIVERSITY OF ABERDEEN, SCOTLAND
Nicolas Rawlinson

UNIVERSITY OF TASMANIA
Henry Duh
CORE PROJECTS

THEME 1 – ANALYTICAL DEVELOPMENTS
- Fundamentals of ICP-MS
- Fundamentals of laser ablation
- Element mapping by LA-ICP-MS
- Calibration standards for LA-ICP-MS
- LA-ICP-MS instrumentation development
- U-Pb dating

THEME 2 – ALGORITHMS AND SOFTWARE FOR GEOCHEMICAL MODELLING AND ANALYTICAL DATA PROCESSING
- LA-ICP-MS data reduction software
- Modelling of crystallisation and melting processes

THEME 3 – COMPUTATIONAL KNOWLEDGE DISCOVERY FOR GEOSCIENCE
- Target generation and geology map refinement from data-driven computation
- Technique development in computational knowledge discovery from high-D data
- Geodata analytics, visualisation and decisions

PROJECT SUMMARIES

THEME 1 – ANALYTICAL DEVELOPMENTS

FUNDAMENTALS OF ICP-MS
Leaders: Jay Thompson, Leonid Danyushevsky
Team Members: Sarah Gilbert, Paul Olin
Collaborators: Fred Fryer, Sam Houk

This project investigates physical processes occurring in ICP-MS instrumentation used for laser ablation applications. Specifically, the project aims to better understand how laser ablation aerosols are broken down and ionised in the argon plasma and where interference species are forming.

This year the research has focussed on:
- The measurement of ion energies in ICP-MS during laser ablation compared to conventional solution ICP-MS.
- The measurements of oxide formation rates in various matrices, in order to understand where oxide interferences are forming, and to apply correction factors to analyses of geological materials.
- The addition of diatomic gases to laser ablation ICP-MS to test the effects on sensitivity and interference formation.

A better understanding of the instrumentation will enable enhancements in the methods used at CODES, as well as improving instrument design.
FUNDAMENTALS OF LASER ABLATION

Leaders: Sarah Gilbert, Leonid Danyushevsky

Team Member: Jay Thompson

Collaborators: Charlotte Allen, David Death, Fred Fryer, Detlef Gunther, Joachim Koch, Toshiaki Matsuda, Paul Perry, Dany Savard, Michael Shelley, Daniel Tabersky

This research is investigating the physical and chemical processes that occur during laser ablation, in order to improve the analysis of geological materials by LA-ICP-MS.

During 2014, the team focussed on:

- An investigation into the ablation processes and element fractionation between Fe and S during the ablation of sulfide minerals for the three different types of lasers at CODES, as well as a femtosecond pulse width laser at ETH Zurich. This investigation was part of Sarah Gilbert’s PhD project and was presented at the European Workshop of Laser Ablation in London.

- A study of the ablation craters, and the amount of melting that occurs around them, in different sulfide minerals, utilising the imaging capabilities of the FE-SEM at the Central Science Laboratory (UTAS). This study also formed part of Sarah Gilbert’s PhD project.

- A comparison of the amount of signal drop during the ablation of sulfide minerals on seven different types of lasers at CODES, ETH Zurich, QUT and Universite du Quebec a Chicoutimi.

ELEMENT MAPPING BY LA-ICP-MS

Leader: Sebastien Meffre

Team Members: Leonid Danyushevsky, Paul Olin, Sasha Stepanov

Key objectives are to develop new analytical procedures and algorithms for mapping the distribution of trace elements in geological materials by LA-ICP-MS. This year the main focus was on:

- Improving the efficiency of element map acquisition.

- Changes in the analytical protocols and instrument cleaning routines to allow long multi-day and overnight runs, using the Laurin Technic S15S laser ablation sample cell.

- Further testing and refining of the automated mineral identification and matrix correction algorithms to allow sulfur to be used in mineral identification.

- Development and implementation of the algorithm for data processing from analytical sessions that use two different calibration standards.

- Optimisation of algorithms for applying median filters and processing multiple images, acquired simultaneously.

CALIBRATION STANDARDS FOR LA-ICP-MS

Leaders: Ivan Belousov, Leonid Danyushevsky

Team Members: Sarah Gilbert, Elena Lounejeva, Paul Olin, Jay Thompson

Collaborators: Ralph Bottrill, Detlef Günther, Daniel Tabersky, Richie Woolley

This project is aimed at the development and characterisation of new calibration standards for LA-ICP-MS analysis of various geological materials. The focal points for the past year were:

- Fabrication of a new calibration standard for LA-ICP-MS analysis of sulfides that replaces, and improves upon, the standard currently used (fabricated in 2003). One of the major improvements is a more homogeneous distribution of volatile elements Se, Tl, Au, Pt, Ag and Te. Several approaches to fabrication of the new standard were investigated, including one based on improving the preparation procedure used currently. A borate flux with a low melting temperature was mixed with sulfide powders and doped with other elements. The recently acquired Claasse M4 LPG fluxer was employed to ensure better temperature controls and mixing within a shorter preparation time. The resultant glass discs proved to be significantly more homogeneous.

Aleksandr (Sasha) Stepanov preparing samples for laser ablation analysis.
• Pressed pellets made from nano-particle powders were tested as an alternative to glass discs for producing a standard for sulfide analysis. Iron sulfide nano-particles produced by flame spray synthesis at ETH Zurich were also tested, but proved to be heterogeneous for a wide range of elements.
• Testing commenced of a recently acquired planetary ball-mill (Fritsch Pulverisette 7), which is being used for grinding mixtures of natural sulfide minerals to produce a homogeneous powder with nano-scale particle sizes. This testing will continue in 2015.

LA-ICP-MS INSTRUMENTATION DEVELOPMENT
Leader: Leonid Danyushevsky
Team Members: Sarah Gilbert, Paul Olin, Jay Thompson
Collaborator: Michael Shelley
This project tests, designs and develops new instrumentation to ensure continuing advances in geological LA-ICP-MS applications. Example developments include ablation cells, the interface between the laser and the mass-spectrometer, and testing new types of laser microprobes and mass-spectrometers. The main activities during the year were related to understanding the effect of the configuration of the smoothing devices, within the interface between the laser probe and ICP-MS, on signal smoothness and wash-out times, plus testing the applicability of a simultaneous detection ICP-MS model (SpectroMS from SPECTRO Analytical Instruments GmbH, Kleve, Germany) for LA-ICP-MS applications.

U-PB DATING
Leader: Jay Thompson
Team Members: Leonid Danyushevsky, Sebastien Meffre
The objectives of this research are to use analytical developments to improve the precision and accuracy of U-Pb dating by LA-ICP-MS, and expand the range of minerals that can be dated using this method.

This year, the team focussed on gaining a better understanding of the limits of accuracy of U-Pb analysis of zircon. Zircons of known ages, and varied trace element compositions, were analysed under a range of conditions, which enabled the system to be optimised to provide the most accurate analyses with the lowest age offset between zircons.

By using an optical profiler at the Central Science Laboratory at UTAS, the team was able to measure the depth of the ablation craters very precisely and compare them to the measured age offsets. This exercise greatly aided the team’s understanding of the matrix effects between zircons, and led to a series of experiments aimed at minimising these effects. Subsequently, the team has significantly extended the observations from previous studies, which have shown that zircons with a higher radiation dose ablate deeper, resulting in age overestimation. In addition, by determining age offsets for apatite minerals with different compositions, they have gained a much better understanding of the matrix effects when dating apatites.

THEME 2 – ALGORITHMS AND SOFTWARE FOR GEOCHEMICAL MODELLING AND ANALYTICAL DATA PROCESSING
LA-ICP-MS DATA REDUCTION SOFTWARE
Leader: Leonid Danyushevsky
Team Members: Sarah Gilbert, Sebastien Meffre, Sasha Stepanov, Jay Thompson
Collaborators: Paul Agnew, Anthony Harris, Alan Kobussen, Ashley Norris
This project, co-funded by Newcrest Mining (until April 2014) and Rio Tinto (from December 2014) as part of their support for the R&D program of the CODES LA-ICP-MS analytical facility, aims to develop comprehensive, user-friendly LA-ICP-MS data processing software, capable of:

• Quantification of data acquired using multiple calibration standards and a range of internal standard elements.
• Quantification of images depicting distribution of major and trace element concentrations in fine-grained multi-mineral aggregates of sulfides, silicates, phosphates and carbonates.
• Identification of mineral phases in, and sizes of, micro inclusions in minerals.
Activities in 2014 were directed toward developing advanced meta-data handling algorithms for user-friendly and efficient processing of the acquired data, using multiple calibration and internal standards. The first fully functional beta-version is scheduled for in-house testing in mid-2015.
THE ENABLING TECHNOLOGIES MODULE EXPLORES AND DEVELOPS NOVEL ANALYTICAL AND DATA INTERPRETATION TECHNIQUES BASED ON THE LATEST TECHNOLOGICAL AND ALGORITHMIC DEVELOPMENTS.

PhD student Francisco Testa operating the RESolution laser probe.
MODELLING OF CRYSTALLISATION AND MELTING PROCESSES

Leader: Leonid Danyushevsky
Collaborators: Alexey Ariskin, Pavel Plechov

The aims of this project are to:

• Develop model-independent algorithms for tracking the behaviour of trace elements during magma generation and evolution processes.
• Conduct modelling of post-entrapment modifications in melt inclusions in minerals.
• Simulate processes of mantle and crustal melting, and melt crystallisation.
• Develop a range of general petrological tools. (These algorithms are continuously implemented in future versions of the ‘Petrolog’ software package).

In 2014, work continued on developing a new model for plagioclase-silicate melt equilibrium under hydrous conditions at variable pressures. An updated version of Petrolog3 was made available on the Petrolog home page (http://petrolog.web.ru).

THEME 3 – COMPUTATIONAL KNOWLEDGE DISCOVERY FOR GEOSCIENCE

TARGET GENERATION AND GEOLOGY MAP REFINEMENT FROM DATA-DRIVEN COMPUTATION

Leader: Matt Cracknell
Team Member: Anya Reading
Student: Stephen Kuhn

This project uses big data machine learning techniques to gain new understandings of the lithology and geological contact mapping in difficult or poorly exposed terranes.

The successful proof of concept studies were published this year in the high-profile international journal Computers and Geosciences and a key case study from NW Tasmania was published in The Australian Journal of Earth Sciences. Matt Cracknell obtained his PhD during the year, with a project centred on this work.

Following these successes, an expression of interest for a full proposal was circulated by AMIRA International, which has received a positive initial response. The AMIRA P1166 project proposes to run case studies, in consultation with industry partners, to facilitate technology and skills transfer, tailored to individual ore exploration contexts.

PhD student Stephen Kuhn, who joined the team in September, will progress the techniques, which employ a combination of supervised (Random Forests) and unsupervised (Self-Organising Maps) methods. The new project will trial the methods across several contrasting ore deposit environments to optimise workflows for practical use.

TECHNIQUE DEVELOPMENT IN COMPUTATIONAL KNOWLEDGE DISCOVERY FROM HIGH-D DATA

Leader: Anya Reading
Team Member: Matt Cracknell
Collaborator: Patrice de Caritat

This project is aimed at computational knowledge discovery from high-dimensional (high-D) data. Highlights of the year included:

• Development of a new technique that incorporates spatial context information into a workflow for predicting lithology from high-D data, which improves the percentage of correctly predicted ‘pixels’. Importantly, the improvements are made with no significant penalty in computational time; hence, the method is readily
Reclassification of Random Forests lithology predictions with different post-regularization (PR) filter dimensions. An increase in PR filter dimensions results in an improvement in prediction accuracy of geological features that are larger than the PR filter dimension.

applicable and may be run on portable computers of reasonable specification. A paper on this work is scheduled to be published in *JSTARS*, an applied spatial science journal.

- Exploring the application of big data techniques to regolith signatures. This work has now been extended using significant national datasets, in collaboration with Geoscience Australia, and submitted for publication. Matt Cracknell received a ‘best paper’ award at a specialist workshop held in Western Australia for a presentation related to this research.

GEODATA ANALYTICS, VISUALISATION AND DECISIONS

Leader: Anya Reading

Student: Peter Morse

Collaborator: Henry Duh

This project expands the scope of research undertaken within CODES and the Discipline of Earth Sciences into geodata analytics and innovative visualisation strategies. By utilising the existing expertise in technique development and the practical application of methods in computational geophysics and Earth informatics, the project focusses on using the visualisation as part of the data inference process, rather than being simply a way of viewing the final output.

During 2014, PhD student Peter Morse developed a computer application for the animated visualisation of big data. This application uses highly capable strategies from the field of computer graphics to analyse scientific data formats. Large data files are accessed via the Australian NeCTAR (National e-Research Collaboration Tools and Resources) cloud. A presentation on the application and an illustrative case study were presented at the American Geophysical Union meeting in San Francisco, December 2014.

LOOKING FORWARD

During 2015, research activities will focus on continuing analytical and algorithmic developments, and contributing to the activities of the Australian Research Council (ARC) Industrial Transformation Research Hub: Transforming the Mining Value Chain (TMVC).

Module research within TMVC will concentrate on developing data processing algorithms for high data generating scanning sample characterisation equipment, such as the Corescan drill-core logger; applying big data approaches to geoenvironmental prediction; and building laser ablation sample cells capable of accommodating large sections of drill core.

The installation of two new excimer laser systems early in 2015 will enable further comparison between laser types, and an investigation into the effects of changing the laser wavelength, pulse width and optical geometry.

Several papers will be submitted to international peer-reviewed journals, covering research on:

- Understanding ion energy in argon plasma, that will highlight differences between solution and laser ablation ICP-MS.
- Development and testing of the new calibration standard for sulfide analysis by LA-ICP-MS.
- Matrix effect in U-Pb dating of zircons by LA-ICP-MS.

Further analytical developments will involve gaining a better understanding of the matrix effects in apatites, and improving the mineral identification and matrix correction algorithms during imaging of trace element distribution within minerals, using LA-ICP-MS.

Market testing is planned for the AMIRA P1166 project proposal, which puts forward the concept of using big data machine learning techniques to gain new understandings of the lithology and geological contact mapping in difficult or poorly exposed terranes.
OBJECTIVES

• Provide an ongoing supply of world class PhD, Masters and Honours geoscience graduates.

• Deliver a range of professional development short courses and workshops tailored to meet the needs of the minerals industry in terms of re- and up-skilling its workforce.

INTRODUCTION

The Centre has developed an international reputation for delivering excellence in postgraduate education, which includes providing students with a comprehensive grounding in the earth sciences. Students come from all parts of the globe to study at CODES, with many progressing to senior roles in the minerals industry, state and federal governments, and academia.

Training activities also play a vital role in the Centre’s research program via a wide array of student theses, which are integral to research activities throughout the other three Modules.

In recognition of these attributes, CODES has developed a Module within its new structure dedicated solely to training. This ensures that training continues to play a key role in the Centre, and also has the necessary structure and platform to expand and evolve.

Areas covered under the new Module range from the Higher Degree by Research (HDR), Masters and Honours programs, through to a variety of short courses and workshops, most of which are aimed at re- and up-skilling of professionals in the minerals industry.

HIGHLIGHTS

It was a busy and highly productive year for the Training Module, which included a number of accolades and achievements.

The HDR Program continued to demonstrate its popularity in overseas markets, attracting a cohort of 37 international students representing 18 nationalities. It is also pleasing to note that the program achieved a record high of seven Australian enrolments, though this could partly be a reflection of tighter employment conditions in the industry.

The Master of Economic Geology Program had a very good year, also achieving a record high, with 52 active participants, coupled with strong attendances at all three of its short courses for 2014.

A highlight for the postgraduate students was the SEG Student Chapter field trip to Portugal and Spain, where they gained first hand experience of the renowned Iberian Pyrite Belt – one of the most important and abundant VHMS districts in the world.

The students also received a raft of awards and grants, which are listed in the SEG Student Chapter section featured later in this Module report.

In September, CODES partnered with consulting company GHD and Mineral Resources Tasmania to run the Advances in Geo-logging short course. This much anticipated industry-focussed course was structured to enhance the geo-logging skills of the participants, with the key aims of improving technical results, profitability and efficiency for their employers.
CODES has a range of postgraduate programs aimed at providing the next generation of world class geoscientists. The main programs are the Higher Degree by Research (HDR), Master of Economic Geology and Honours.

HDR PROGRAM

Students enrolled in the UTAS HDR Program make a major contribution to the research activities of the Centre of Excellence. Ninety per cent of HDR projects are integrated into the Centre's three research modules and about two-thirds of the projects involve collaborations with the minerals industry.

CODES’ success in attracting HDR students from overseas is underpinned by its international reputation as a research training centre. The 2014 cohort included 37 international students representing 18 nationalities.

There were 54 students enrolled in the program during 2014 (50 PhD and 4 MSc or MExploration Geoscience), which included nine new PhD students – Alexander Cherry (Australia), Cassady Harraden (USA), Rachel Harrison (Australia), Jacob Heathcote (Australia), Stephen Kuhn (Australia), Elena Lounejeva (Australia), Larriana Morgan (Australia), Indrani Mukherjee (India), and Jacob Mulder (Australia). Thirteen PhD students and one MSc student had theses under examination, nine of whom graduated: Matt Cracknell, Hugo Galván, Dan Gregory, JianXiang Guan, Roisin Kyne, Takayuki Manaka, Daniele Redi, Selina Wu, and Paula Montoya (MSc).

The number of thesis submissions and graduations reduced the effective PhD workforce to 42. In addition, two students suspended their candidature for part of the year, one chose to study part-time, and two withdrew (one PhD and one MSc), reducing the effective HDR workforce to 38.

Notwithstanding this natural attrition, both the figures for the effective workforce and new enrolments are on par with the previous year. It should also be noted that the intake of seven Australian HDR students in 2014 was a record high, possibly reflecting the tighter employment situation in the minerals industry.

The HDR program depends on UTAS funding in the form of highly competitive living allowance scholarships and tuition fee waivers, as well as industry funding of scholarships and research costs.

MASTER OF ECONOMIC GEOLOGY PROGRAM

The coursework based Master of Economic Geology degree at CODES forms part of the national Minerals Geoscience Masters (MGM) program – a collaboration between UWA, JCU, UTAS and Curtin University. The MGM remains the course of choice for industry-based geoscientists, attracted by the opportunity of studying for an internationally recognised degree, while still being able to pursue their careers in the minerals industry.

The Centre’s Master of Economic Geology Program has enjoyed another busy and successful year, with active enrolments in the program reaching an all time high of 52 students, coupled with strong attendances at all three of the short courses.

THE SHORT COURSES IN 2014

VOLCANOLOGY AND MINERALISATION IN VOLCANIC TERRAINS

In March, Jocelyn McPhie, Bruce Gemmell and Rebecca Carey led a group of 19 participants to New Zealand’s North Island to examine modern volcanic systems as part of the ever-popular Volcanology and Mineralisation in Volcanic Terrains short course. The second part of this field-based unit was led by Jocelyn, Rebecca and Ross Large, who took the group to the west coast of Tasmania to examine the well mineralised and altered Cambrian Mt Read Volcanics. This hands-on course provides an excellent introduction to the processes and products of different eruption styles, contrasts in scale and structure of volcanoes, identification of key volcanic facies associations, and interpretation of facies variations. Mineralisation and alteration processes related to hydrothermal systems in subaerial and submarine volcanic environments and implications for mineral exploration are also addressed.
EXPLORATION IN BROWNFIELD TERRAINS

Robert Scott led the Exploration in Brownfield Terrains short course in June, which was attended by 22 participants. This unit is designed to bring students up-to-date with the latest exploration techniques and approaches to compiling and working with historical datasets. Exploration in data-rich environments, close to existing mines, has become a preferred method of enhancing company resources in recent years. This trend has led to a sustained interest in this course, which covers cutting-edge technologies in geophysics, geochemistry and 3D visualisation, and uses real data from world-class mineralised districts. Highlights of the course were presentations by expert teaching staff from CODES and the minerals industry. The leading minerals industry professionals and consultants who provided tuition included Heidi Pass (Reflex Geochemistry), Andrew Cantwell and Jacob de Lacey (Leapfrog3d), Kim Denwer (MMG, Rosebery) and John Holliday (Consultant).

ORE DEPOSIT MODELS AND EXPLORATION STRATEGIES

Twenty-four Masters students and six participants from the minerals industry attended the final short course of the year, Ore Deposit Models and Exploration Strategies, held over the last two weeks of October.

The first six days of the course utilised an interactive format of lectures and practical exercises to provide an up-to-date synopsis for a range of key ore deposit types, addressing topics such as location, characteristics, genesis and exploration strategies. Deposit types covered were sediment-hosted U, Cu and Pb-Zn, volcanic-hosted massive sulfide and sea-floor hydrothermal, Carlin-type sediment-hosted Au, porphyry and epithermal, orogenic, and Witwatersrand Au. The second week featured two workshops, each lasting two days. The first was entitled Alteration Geochemistry and Targeting, and was led by invited speaker, Scott Halley. The second was entitled Breccias in Hydrothermal and Ore-forming Environments, and was led by David Cooke, with the support of invited speakers Nick Oliver and Stephen Cox. On the final day, the students gave short presentations on a range of ore deposit types not formally covered in the course.

CHANGES TO ADMINISTRATION

A number of administrative changes took place during the year in order to bring the course structure into line with the new Student Management system adopted by UTAS. As a result, students who commenced their Masters degrees prior to April 2014 continued under the original course structure (S7R), receiving 0.20 credit points per unit (eight in total); while those who commenced after that date study under the new course structure (S7W), receiving 0.25 credit points per unit (eight in total). New unit codes have been introduced as part of the new system, but dual coding will operate during the transition phase to cater for students enrolled under the old course structure.
GOOD YEAR FOR ENROLMENTS AND COMPLETIONS

Ten new students joined the program in 2014, and one past student re-activated their enrolment, bringing the total number of UTAS-based students active in the national program to a new record of 52. Growth of the program appears set to continue, with seven new admissions and one re-activated enrolment expected to be processed early in 2015. This reflects the growing recognition and popularity of the Masters program with industry-based geoscientists, and confirms UTAS/CODES as the institute of choice for its completion.

It was also a good year for graduations and completions, with eight students graduating: Corrie Chamberlain, Glen Diemar, Rachel Harrison, Kane Maxwell, Joshua Phillips, Tatjana Pucko, Michelle Puskas and Scott Randall. A further five students completed the degree and are eligible to graduate in 2015: Lynelle Beinke, Truong Le, Neil Macalalad, Michael Musialike and Ned Summerhayes. It is particularly pleasing to note that five of the twelve students who recently completed the program incorporated a research thesis (worth 25%) as part of their degree.

THE PROGRAM FOR 2015

- 13 – 27 March: Ore Deposits of South America (KEA706/KEA707)
- 8 – 19 June: Ore Deposit Geochemistry, Hydrology and Geochronology (KEA704/KEA709)
- 19 – 30 October: Geometallurgy (KEA702/KEA711)

HONOURS PROGRAM

The total number of students enrolled in the program was 13 for the first half of the year and 14 thereafter, after accounting for students that either enrolled or completed mid-year.

Out of this cohort, Wasim Hashmi joined the group from Monash University, Anthony Benn from Macquarie University, Natnaree Chandraprasert from the University of New South Wales, Naomi Potter from UWA, and Supitchaya Paipana from Chulalongkorn University in Thailand. The remaining students came to the program via an undergraduate degree at the University of Tasmania.

Eight of the Australian projects were based in Tasmania. Four of the international projects involved fieldwork, in Myanmar (2), Thailand and New Caledonia. The Tasmanian projects were sponsored by Venture Minerals, Mineral Resources Tasmania, MMG Rosebery, Grange Resources, DPIPWE, Nyrstar, the Derwent River Estuary Program and the Australian Research Council. The mainland projects were supported by Anglo American, CBH Resources, Sandfire Resources, QGC, and OZ Minerals (Prominent Hill). The projects in Myanmar were sponsored by the National Prosperity Gold Production Group.

CODES thanks the sponsors for their valued support, with a special mention to QGC, Venture Minerals, CBH Resources, the Derwent River Estuary Program, and the Myanmar-based National Prosperity Gold Production Group, all of whom were supporting the program for the first time. The sponsorships have been vital to the success of the projects, and the development of the students during a crucial phase of their studies.

The degree coordination continued under the supervision of Garry Davidson, with the welcome addition of the respected structural and economic geologist David Selley, who manages the coursework component of the Honours candidature.
HONOURS COURSEWORK PROGRAM

CODES offers three short courses, five to eight days in duration, as part of the Minerals Tertiary Education Council (MTEC) Minerals Geoscience Honours and Victorian Institute of Earth and Planetary Sciences (VIEPS) Honours coursework programs.

EXPLORATION FIELD SKILLS MAPPING CAMPS (in partnership with MTEC)

Course Leader: Robert Scott
Course Demonstrators: Sean Johnson, Erin Lawlis, Jacob Mulder, Evan Orovan, Josh Phillips, Nathan Steeves

The Exploration Field Skills mapping camp provides participants with the opportunity to develop skills in geological mapping, core logging and structural analysis, within a mineral exploration context.

During the week-long camp in western Tasmania, participants mapped, interpreted and ultimately assessed the exploration potential of a 4–5 km² area of the Cambrian Mount Read Volcanics. The rock sequence exposed in the mapping area is similar to those hosting the Hercules and Rosebery volcanic-hosted massive sulfide (VHMS) deposits, located 5 and 10 km further north, respectively.

One day of the camp was spent at MMG’s exploration core yard in Tullah, where the students inspected three of the eight diamond drill holes previously drilled in the mapping area, and learned structural and lithologic core logging techniques. One of the drill holes examined intersected a narrow low-grade Zn-Pb mineralised interval. Participants evaluated textural, structural, mineralogical and geochemical features of this interval, and together with an assessment of its stratigraphic position, decided whether it was more likely to be related to Cambrian VHMS or Devonian (structurally-controlled) mineralisation.

Data collected during field mapping and core logging were used to unravel the stratigraphy and structure of the area, as well as the nature and extent of any hydrothermal alteration. This information provided the basis for an assessment of the exploration potential, with participants asked to identify any previously untested areas in which base metal deposits could feasibly occur within 500 m of the surface.

The eight-day camp is held twice each year, in February and March. In 2014, a total of 39 students, from eight different universities, attended the camps.

ORE DEPOSIT MODELS
(in partnership with VIEPS)

Course Presenters: David Cooke, Garry Davidson, Bruce Gemmell, Ross Large, Robert Scott, David Selley

In May, 16 students from Victoria attended the five-day Ore Deposit Models Honours-level short course, which provides an introduction to the key features of several major classes of economically important mineral deposits.

Each deposit style was discussed in terms of geological and tectonic framework, mineralisation, alteration, genetic models and exploration criteria.

The deposits covered were:
- Volcanic hosted massive sulfide deposits.
- Epithermal, porphyry copper and skarn deposits.
- Iron-oxide copper gold.
- Sediment-hosted and orogenic gold.
- Sediment-hosted uranium, copper and lead-zinc.

Each day of the course incorporated a mixture of lectures and practical exercises. Lectures covered the general characteristics and setting of the deposit types covered, as well as the various genetic models that have been put forward to explain their formation. In the practical exercises, students examined and interpreted samples from many of the premier mineral deposits and mineralised districts throughout the world.

PRACTICAL IGNEOUS PETROLOGY

Course Presenter: Leonid Danyushevsky

Also in May, 11 students attended the Practical Igneous Petrology course, presented by Leonid Danyushevsky. The five-day program is a mixture of lectures and practical exercises, aimed at postgraduate students at Honours level and above with an interest in the formation and evolution of basic and ultrabasic magmas and their relationship to magmatic ore deposits.

Topics covered included:
- Key theoretical aspects of petrology, including units of concentration, solid solution and mineral formulas, activities and equilibrium, the phase rule, mass balance, phase diagrams, and equilibrium/fractional crystallisation.
- Examination of a large layered intrusion (the Dovyren Magmatic Complex in Siberia), the effects of pressure and H₂O on melting and crystallisation, the causes of melting and crystallisation.
- An introduction to the concept of distribution coefficients for trace elements.
- Trace elements in the main rock-forming minerals.
- Modelling of crystallisation and studies of melt inclusions.
- Examples from MORB, subduction-related lavas and komatiites.
IN AUSTRALIA

Project locations are shown in capitals. Unless marked otherwise, student projects shown here are PhDs.

1. Anderson, Michael. SA (Hons)
 Analysis of wide angle reflection and refraction data, Mount Woods area, South Australia.

2. Apukhtina, Olga. SA
 Stable isotopes (C, S and O) and halogens (Cl, F) in gangue and ore minerals at Olympic Dam: Evaluation of mantle and crustal contributions to mineralisation.

3. Baker, Wayne. WA (Hons)
 Lithostratigraphy, facies architecture, alteration and geochemistry of the footwall to the DeGrussa volcanic hosted massive sulfide deposit.

4. Barbosa De Souza, Luziane. NSW (Masters)
 Webbs silver project, South Australia.

5. Benn, Anthony. NSW (Hons)
 Geology of the Racecourse Prospect, NSW: Economic geology, geochronology, geochemistry, and paragenesis of a Cu-mineralised I-type granitoid suite.

6. Cave, Ben. VIC
 A metamorphic source for tungsten in metasedimentary-hosted orogenic gold deposits.

7. Cavill, Chloe. VIC (Masters)
 Geochemical classification of orebearing/metalliferous fluids of the Costerfield region.

8. Chandraprasert, Natnaaree. TAS (Hons)
 Stratigraphy, structure and volcanology between the Mount Black Fault and the Rosebery Fault in the north-end of Rosebery Mine, western Tasmania.

9. Cherry, Alexander. SA
 Petrology, provenance and composition of bedded sedimentary facies in the Olympic Dam deposit.

10. Condon, Jo. WA (Masters)
 Ore types of the DeGrussa and Conductor 1 Ore lenses of the DeGrussa VHMS deposit, Western Australia.

11. Copper, Ashby. TAS (Hons)
 The crustal structure of the Bass Strait region from combined passive seismic methods.

12. Diemar, Glen. SA (Masters)
 Geochronology of hydrothermal REE minerals and their relationships with economic mineralisation at the Olympic Dam breccia complex, South Australia.

13. Eshaghi, Esmaeil. TAS
 Petrophysical and geophysical investigation of western Tasmania.

14. Farias, Pablo. NT (Masters)
 TBA (An aspect of uranium deposits in NT).

15. Fox, Jodi. TAS
 Basaltic volcanic successions in Tasmania and on Heard Island.

16. Gilmore, Phil. NSW (Masters)
 An aspect of the geology of the Koonenberry Belt, NSW.

17. Gregory, Dan. WA
 The trace element composition of sedimentary pyrite: Factors affecting uptake and uses of the data for determining paleo-ocean conditions.

18. Harvey, Alistair. QLD (Hons)
 Depth to basement below the Bowen and Surat Basins, Chinchilla, Queensland.

19. Hashmi, Wasim. TAS (Hons)
 Sn-W-Ta-Nb in micas and their relationship to granite fractionation in western Tasmania.

20. Hawke, Margy. WA
 Geology of the DeGrussa Cu-Au-Ag volcanic-hosted massive sulfide deposit, Western Australia.

21. Haycroft, Melanie. NSW (Hons)
 The eastern mineralisation, Broken Hill, NSW.

22. Holmes, Travis. TAS (Hons)
 Geometry, timing and controls on alteration and mineralisation at the Big Wilson Tin Prospect, NW Tasmania.

23. Hong, Wei. TAS
 Magmatic-hydrothermal volatile exsolution and mineralisation in Tasmanian Sn granites.

24. Hoyle, Jonathon. NSW (Masters)
 An aspect of the geology of North Parkes, NSW.

25. Huang, Qiuyue. SA
 Mafic dykes at Olympic Dam.

26. Hughes, Stuart. TAS (Hons)
 Quantifying and characterising heavy metal contamination and sedimentation rates in the Derwent Estuary.

27. Jackson, Laura. TAS (Hons)
 Geochemical and mineralogical characterisation of tailings: Evaluating the benefits of water covers as a rehabilitation strategy, Savage River Mine, Tasmania.
28. Kyne, Roisin. NSW
Genesis and structural architecture of the CSA Cu-Ag (Pb-Zn) mine, Cobar, New South Wales.

29. Lower, Chantelle. SA (Masters)
An aspect of the geology of the Olympic Dam deposit.

30. McAdam, Will. TAS (Hons)
Geophysical investigation of the Mole Creek area, Tasmania.

31. Morgan, Larriana. NT
Controls on copper mineralising process in the central McArthur Basin, NT (Redbank Package), and its implications for the metallogeny of extensional basins.

32. Mukherjee, Indrani. NT
Pyrite trace element chemistry of black shales of the “boring billion” period.

33. Mulder, Jacob. TAS
From Nuna to Gondwana: An evaluation of the early tectonic history of Tasmania.

34. Pascual, Richelle. TAS
The characteristics and role of colloidal silica fluids in the formation of the Grieves Siding Zn-Pb prospect, western Tasmania.

35. Pereira da Fonseca, Pedro. TAS
Facies analysis and correlations in complex mineralised submarine volcanic successions: Mount Read Volcanics, western Tasmania.

36. Sharma, Subira. QLD
Evaluation of links between Merlin-style Mo-Re mineralisation and magmatism in the Cloncurry fold belt, Queensland: Implications for exploration.

37. Steadman, Jeff. WA
BIFs, black shales, and gold deposits: A re-evaluation.

38. Vejelyte, Irma. SA
Mafic magmatism in the Gawler Craton: Distribution, composition, timing, sources and tectonic setting.

39. Wu, Selina. TAS
Volcanic hosted massive sulfide deposits of the Que-Hellyer Volcanics, western Tasmania.

40. Yilmaz, Onur. NSW (Masters)
The Mount Carrington epithermal Au and Ag-Au deposits, NSW: Potential for porphyry-style mineralisation.

41. Yu, Jie. TAS (Hons)
A geophysical investigation of the Mt Lindsay-Lynch Hill area, western Tasmania.
OUTSIDE AUSTRALIA

Project locations are shown in capitals. Unless marked otherwise, student projects shown here are PhDs.

1. Baker, Fabian. ARMENIA (Masters)
Amulsar HSE Au deposit, Armenia.

2. Basori, Mohd Basil Iswadi Bin. MALAYSIA
Geology of volcanic hosted massive sulfide (VHMS) deposits in Central Belt, Peninsular Malaysia.

3. Beas Caceras, Billy. PERU (Masters)
 Petrography and mineralogy of volcanic rocks and age dating of La Zanja Mine, Peru.

4. Berkenbosch, Heidi. NEW ZEALAND
Geochemistry of hydrothermal mineral chimneys from Brothers volcano, Kermadec Arc.

5. Calderon-Tipiani, Cesar. PERU (Masters)
Chanca low sulfidation deposit, Peru.

6. Cave, Ben. CANADA, NEW ZEALAND
A metamorphic source for tungsten in metasedimentary-hosted orogenic gold deposits.

7. Celiz, Djohanne. PHILIPPINES (Masters)
The geology, alteration, and mineralisation of the Sagay deposit in northern Negros, Philippines.

8. Chen, Jing. CHINA
The geology, mineralisation, alteration and fluid evolution of Zijinshan ore field, Fujian Province, China.

9. Erskine, Tobias. MYANMAR (Hons)
Geology, structure and mineralisation characteristics of the Modi Taung gold deposit, Myanmar.

10. Escolme, Angela. CHILE
Ore characterisation and geometallurgical modelling at the Productora Cu-Au-Mo deposit, Chile.

11. Faustino, Maria Lourdes M. PHILIPPINES (Masters)
Plio-pleistocene intrusive history and ore paragenesis of Bayugo porphyry Cu-Au deposit Surigao Del Norte, Philippines.

12. Firmansyah, Arga. INDONESIA (Masters)
The Panguril porphyry-epithermal prospect, Indonesia.

Palmarejo carbonate-base metal epithermal Ag-Au district, Chihuahua, México.

14. Guan, JianXiang. CHINA, USA
Origin of associated magnetite and sulfide mineralisation in large gabbroic intrusions: An LA-ICP-MS study of minerals and melt inclusions from the Panzhihua and Taihe intrusions in Emeishan LIP and Duluth Complex.

15. Harraden, Cassady. TANZANIA
Geometallurgical project in Tanzania.

16. Harrison, Rachel. INDONESIA (Masters & PhD)
Tuijuh Bakit Cu-Au porphyry-epithermal deposit, Java, Indonesia.

17. Heathcote, Jacob. ZAMBIA
Gold distribution and association at the Kansanshi copper-gold deposit Zambia: Processes responsible for gold precipitation and implications for ore zone delineation and recovery.

18. Holt, Sam. USA
Understanding of basaltic eruption dynamics and mechanisms: Effusive and explosive eruptions in Hawaii.

19. Jimenez Torres, Carlos Andres. PHILIPPINES
Bantug lithocap, Negros Island, Philippines: Mineralogy, textures, and chemistry.

20. Johnson, Sean. FINLAND, ESTONIA, SWEDEN, RUSSIA
Trace elements in metalliferous black shales.

21. Kamvong, Teera. THAILAND, LAOS
Geology and genesis of porphyry-skarn Cu-Au deposits at the Northern Loei and Truong Son Fold Belts, Thailand and Laos.

22. Lawlis, Erin. PNG
Au-bearing pyritic ore of Lihir, Papua New Guinea: Its physiochemical character and nature of the causative fluids.

23. Le, Xuan Truong. VIETNAM (Masters)
Mineralisation of Me Xi gold deposit, Vietnam.

24. Macalalad, Neil. INDONESIA (Masters)
Geology, alteration, mineralisation and vectoring to porphyry centre in the Aiasajur prospect, Irian Jaya, Indonesia.

25. Makoundi, Charles. MALAYSIA
Geochemistry of Phanerozoic black shales in Peninsular Malaysia: Relationships to gold mineralisation.

26. Manaka, Takayuki. VIETNAM
Geology and mineralisation characteristics of the Phuoc Son goldfields, central Vietnam.

27. McLelland, Rebecca. NEW ZEALAND (Masters)
Gold mineralisation at the Reefton Goldfield, New Zealand.

28. Montoya, Paula. COLOMBIA (Masters)
Commination studies: La Colosa case study.

29. Mukherjee, Indrani. INDIA
Pyrite trace element chemistry of black shales of the “boring billion” period.
30. Musialike, Michael. ZAMBIA (Masters)
Controls on gold mineralisation at Matala and Dunrobin, Zambia (Luirigold).

31. Nuanla-Ong, Saranya. MYANMAR (Masters)
Paragenesis, pyrite geochemistry and ore fluids at Htongyi gold veins, Myanmar.

32. Orovan, Evan. FIJI
Geology, geochemistry and genesis of the Namosi porphyry Cu-Au deposits, Fiji.

33. Paipana, Supitchaya. THAILAND (Hons)
Geochemistry and mineralisation characteristics of Bo Thong antimony-gold deposit, Chonburi province, Eastern Thailand.

34. Piquer Romo, Jose Meulen. CHILE
Structural geology of the Andes of Central Chile: Evolution, controls on magmatism and the emplacement of giant ore deposits and implications for exploration.

35. Redi, Daniele. ITALY
A contribution to the understanding of the eruptive behaviour of Somma-Vesuvius; A mineral chemistry perspective.

36. Rinne, Marc. PNG
Geology and genesis of the contrasting Wafi-Golpu porphyry-epithermal deposit, Papua New Guinea.

37. Serrano, Lina. (U Padova) ARGENTINA, MAURITANIA, MALI
The magmatic province of Patagonia and sills from Mauritania and Mali: Examples of silicic and basaltic large igneous provinces.

38. Steadman, Jeffrey. USA
BiFs, black shales, and gold deposits: A re-evaluation.

39. Steeves, Nathan. USA
Ore genesis of the Greens Creek VHMS Deposit, Alaska: Implications for mining, milling and exploration.

40. Sykora, Stephanie. PNG (Masters)
The geological, structural, geochemical and genetic significance of anhydrite veins and cemented breccias at the Lihir gold deposit, Papua New Guinea.

41. Testa, Francisco. ARGENTINA, CHILE
Tourmaline breccia pipes: San Francisco de los Andes, Argentina and Rio Blanco-Los Bronces, Chile.

42. Traynor, Jonathon. MYANMAR (Hons)
Geology, structure and mineralisation of Shwezin vein, Modi Taung, Myanmar.

43. Vergani, Daniele. FRANCE
The 2007 explosive activity at Piton de la Fournaise volcano (Reunion): Constraints on the eruptive processes by the volcanological study of the erupted deposits.

44. Whitten, Matthew. NEW CALEDONIA (Hons)
Kone Formation (New Caledonia) – a sedimentary record of the final stages of Gondwana breakup.
LAB-BASED PROJECTS

Unless marked otherwise, student projects shown here are PhDs.

Cracknell, Matt
Machine learning for geological mapping: Algorithms and applications.

Gal, Martin
The development of array and single station methods for the analysis of on-land ambient seismic signals from deep ocean storms and coastal sources.

Gilbert, Sarah
Development of analytical methods and standard reference materials for the determination of trace element concentrations and isotopic ratios in sulfur-rich minerals and silicate glasses.

Kuhn, Stephen
The application of machine learning algorithms for lithological mapping and minerals targeting in key ore deposit settings.

Lounejeva, Elena
Geochemical signature of syngenetic and diagenetic pyrite from marine sediments as a paleo-environmental tool.

McMahon, Claire
Distribution of, and controls upon, pyrite trace element content of hydrothermal alteration zones at Hercules VHMS ore deposit, Tasmania and NICO IOCG ore deposit, Northwest Territories, Canada.

Morse, Peter
Combined computational and human interaction strategies in knowledge generation from spatial and spatiotemporal information.

Potter, Naomi (Hons)
The eruption dynamics of the 23rd February 2013 event at Mt Etna.

Strochnetter, Andrew (Hons)
Circulation of the southwest Pacific Ocean during the penultimate deglaciation.

Wells, Lydia (GDipSci)
Long-term assessment of the weathering characteristics of sulfide materials.
The CODES SEG Student Chapter makes an immeasurable contribution to the lives of postgraduate students during their time at the university. It provides a catalyst for bringing together people from widely different cultures and backgrounds, helping them to settle quickly into life on campus, and feel a welcome part of both CODES and the local community. This is achieved through a full and varied range of social and professional development activities that cater for all interests.

The highlight of the year’s professional development activities was the much anticipated field trip to the Iberian Pyrite Belt, sponsored by the SEG and AMIRA International. The participants followed this renowned mineral belt for a large part of its 250 kilometre length, which starts in Alcacer do Sal in Portugal and ends in Sevilla in Spain. A memorable stop on the itinerary was a tour of the Lousal Mining Village, a 19th and 20th century sulfur mine that has been converted into a science centre. Other high points included visits to Somincor’s massive Neves-Corvo copper-zinc operation in Portugal, and the famous Rio Tinto copper deposit in Spain. This latter deposit is currently owned by EMED Mining, but is recognised as being the birthplace of Rio Tinto, which is now one of the world’s leading mining and metals companies. The Portugal leg of the trip was led by Professor Jorge Relvas from the University of Lisbon, with Professor Reinaldo Saez Ramos from Huelva University taking over in Spain.
THE SEG STUDENT CHAPTER PLAYS A VITAL ROLE IN BOTH THE SOCIAL AND PROFESSIONAL DEVELOPMENT ASPECTS OF LIFE ON CAMPUS.
Another field trip was conducted later in the year, but this time it was much closer to home in western Victoria. The one week excursion was led by Professor David Cooke and Dr Rebecca Carey, who introduced seven students to the maar volcanoes and associated volcanic features of the Newer Volcanic Province.

This year’s Mike Solomon Lecture was delivered by the highly respected geologist, Professor Noel White. This annual event is held in honour of the esteemed UTAS/CODES teacher and researcher, Mike Solomon, who passed away in 2009. Noel was an appropriate choice for the lecture as he had completed his PhD at UTAS under Mike’s astute and expert supervision.

A number of students also participated in various conferences during the year, including the Specialist Group in Tectonic and Structural Geology (SGTSG) Biennial Meeting in Thredbo, NSW; the Australian Earth Sciences Convention in Newcastle, NSW; SEG 2014 in Keystone, Colorado, USA, and GEOMET 2014 in Santiago, Chile. Participation included four talks and seven poster presentations.

An innovation in 2014 was the introduction of a series of informal talks, which were held late in the afternoon on alternate Fridays. Students took turns to present a short 20 minute technical talk, followed by a 20 minute slide show of images, usually from field trips. Snacks and refreshments were on hand during and after each presentation, which added to the relaxed setting in which the students could hone their presentation skills and socialise.

SOCIAL EVENTS

The social events play a vital role in helping students from all corners of the globe settle into an environment and culture that are often very different to what they have known. They also help to develop a sense of camaraderie within the group, and establish friendships that often endure long after graduation.

Events organised by the Student Chapter included a quiz night, wine tastings, participation in a UTAS soccer tournament, barefoot lawn bowls and several raffles and competitions. In addition, Student Chapter members participated in a host of other social events including weekly soccer games, dragon boat racing, ice hockey, indoor volleyball, badminton and squash. There were also a number of get togethers to celebrate various national and international milestones such as Christmas, Halloween, Diwali, American Independence Day and Canada Day.

Although the Student Chapter is mostly comprised of PhD students, it also plays an important role in welcoming other postgraduate students. For example, in 2014 the Chapter welcomed new Honours students with a traditional barbeque, and organised welcome drinks for the predominantly industry-based students who participated in the two on-campus Masters short courses.

AWARDS AND GRANTS

It was a successful year in terms of grants and awards from the SEG, with the following students receiving recognition:

- Angela Escolme and Stephanie Sykora – Graduate Student Fellowships.
- Richelle Pascual and Jing Chen – Hugh E. McKinstry Student Research Awards.
- Indrani Mukherjee – Student Research Award.
- Subira Sharma – Field Trip Travel Grant.
- Stephanie Sykora – First place in the student poster presentation category at the SEG’s annual conference in Keystone, Colorado, USA. Stephanie’s poster was adjudged the best out of 179 posters from entrants from around the globe.

In addition to the SEG awards, Sam Holt received the GSA’s David Groves Medal for ‘the best paper in the Australian Journal of Earth Sciences by a young Australian’ and Martin Gal received an American Geophysical Union (AGU) ‘Outstanding Student Paper Award’ at the 2014 AGU Fall Meeting in San Francisco.

Top: SEG Student Chapter Committee for the latter half of the year. From left Indrani Mukherjee, Nathan Steeves, Angela Escolme (President), Larriana Morgan and Erin Lawlis. Bottom: PhD students Ben Cave (kneeling) and Jing Chen at the Rio Tinto deposit in Spain.
Through the day-to-day interactions with the minerals industry, it became increasingly apparent that there was a growing need for specialised courses aimed at re- and up-skilling their workforce. To address this need, CODES decided to introduce a range of courses aimed primarily at the working geologist. The first of these courses, Geophysics for Geologists and Engineers, was introduced in 2013, which was augmented by Advances in Geo-logging in 2014.

Similar to the Master of Economic Geology Program, the courses are structured to provide intensive, high quality training with minimal disruption to the working lives of the participants.

GEOPHYSICS FOR GEOLOGISTS AND ENGINEERS

Course Presenters:
CODES: Michael Roach
GHD: Hugh Tassell

In February, CODES partnered with GHD, one of the world’s leading engineering, architectural and environmental consulting companies, to present the Geophysics for Geologists and Engineers short course at UTAS.

Eight participants attended the six-day course, which provided an up-to-date overview of the application of geophysical methods in mineral exploration, mining, geotechnical investigations, and environmental assessments.

The course is designed to provide geoscientists and engineers with the necessary background to understand and use a wide variety of geophysical methods, and to develop skills in technique selection, survey design, data acquisition and interpretation. A key focus is the practical application of geophysical methods to solve a range of small- and large-scale geological and geotechnical problems. The course includes a mixture of classroom presentations, demonstrations of geophysical equipment and exercises in data acquisition, computer analysis and modelling.

ADVANCES IN GEO-LOGGING

Course Presenters:
CODES: Bruce Gemmell, Julie Hunt, Jocelyn McPhie, Michael Roach, Robert Scott
GHD: Tim Cartledge, Lee Evans, Graham Grainger, Hugh Tassell, Robert Virtue
MRT: David Green, Andrew McNeill

In September, CODES, Mineral Resources Tasmania (MRT) and GHD combined to present the four-day course: Advances in Geo-logging, which was attended by 21 students and seven industry participants.
The course provides a thorough understanding of the latest logging techniques, and how they can be used to improve geo-investigation and planning, while reducing risk, costs and uncertainty within the mining environment. It promotes a holistic approach to core logging during mineral exploration drilling projects, with the goal of maximising the quality, type and utility of data obtained. A key feature of the four days is the practical nature of the course content, which is structured to include lectures each morning from leading industry professionals, followed by extensive practical sessions in the afternoons.

Topics covered included:

- Approaches to geological scan, graphic and structural logging.
- Logging and interpretation of altered mineralised rocks in drill core.
- Best practice in geotechnical logging for assessments of ground conditions relevant to mine planning and design, and the construction of infrastructure such as buildings, roads, tunnels, waste dumps and dams.
- New methods and equipment for obtaining geometallurgical, mineralogical and geophysical information from drill core.
- How information obtained during early-stage (exploration) drilling can help identify future hydrological and geoenvironmental issues, such as aquifer impacts and potential for waste rock acid generation and metalliferous drainage problems.

On the final afternoon, attendees undertook a practical assessment, utilising the skills and knowledge obtained during the course to log selected cores.

LOOKING FORWARD

It is expected to be another good year for the Training Module in 2015. The indications are that the HDR program will continue to achieve strong enrolment figures for international students, and the recent success in attracting local applicants will be emulated.

The Master of Economic Geology Program is scheduled to have a full schedule of three short courses, including the field-based Ore Deposits of South America in March. Enrolments in this program are also expected to match or exceed the high levels achieved in 2014, and it is likely that the milestone of 100 graduates will be achieved before the end of the year.

The Honours coursework program will continue via collaborations with the Minerals Tertiary Education Council (MTEC) and the Victorian Institute of Earth and Planetary Sciences (VIEPS).

CODES will build on its focus on courses for industry, with Geophysics for Geologists and Engineers being held in February, and negotiations to be held with stakeholders to run Advances in Geo-logging later in the year.

The SEG Student Chapter is planning to have another full schedule of social and professional development events, the highlight of which will be a field trip to Iceland and Sweden.

There will also be a change of leadership in 2015, with Anya Reading taking over the responsibilities of Co-Module Leader and Graduate Research Co-ordinator from Jocelyn McPhie. Jocelyn officially retired at the end of 2014, but has been retained by CODES and the University in an honorary capacity. CODES thanks Jocelyn for her outstanding contribution to the Centre.
OUTREACH

Each year, CODES works with the Discipline of Earth Sciences to engage in a program of activities aimed at promoting the value of the geosciences to the broader community, and encouraging young people to consider a career in this field. The past year was another busy period for this program, during which many of the regular activities on the calendar were complemented by a number of new initiatives, both on campus and in the local community.

OUT AND ABOUT IN THE COMMUNITY

One of the highlights of the activities in the community resulted from Rebecca Carey being nominated as a Young Tassie Scientist for National Science Week. Rebecca subsequently became part of a group of four scientists who visited 19 schools in the north of the state, where she gave a total of 30 presentations to students, ranging from Preparatory through to Year 12. Her talks covered her intriguing research into submarine volcanoes, which utilises robotic vehicles to gather rocks and fauna from the seafloor for analysis.

Another highlight was when the curator of the Rock Library, Izzy von Lichtan, helped build two giant model spiders for the Bookend Trust’s Sixteen Legs exhibition, held in Hobart. The 5.5 metre wide cave-dwelling arachnids formed an integral part of an event that focussed on the mysterious and extraordinary world of Tasmania’s underground cave systems. The Bookend Trust is a UTAS-based not-for-profit initiative that seeks to inspire students to pursue careers in science.

Izzy continued her good work at the local Calvin Christian School, where she taught a class of Year 10 students about local geology as part of CSIRO’s Scientists in Schools program. She also mentored a Year 9 student from Ogilvie High School who had a strong interest in minerals. The weekly mentoring was performed as part of the national Big Picture Program, which connects young people with an adult in the community who has expertise that matches the person’s interest.

Other notable activities involved Dan Gregory, Jocelyn McPhie, Peter McGoldrick, and Sharon Allen. Dan and Jocelyn each gave public lectures on their research at the Royal Society of Tasmania. Jocelyn took three Year 8 classes to the local foreshore in Sandy Bay to look at Tertiary basalt, Permian limestone, and Jurassic dolerite rocks. Sharon conducted a similar field trip to the area to show Year 3 and 4 students from Waimea Heights Primary aspects of erosion. Finally, Dan and Peter arranged rock collections for a number of local schools.
ACTIVITIES ON CAMPUS

Activities on campus began with the Science Experience initiative, which has become a regular feature on the early part of the outreach calendar. This national program provides the opportunity for Year 9 and 10 students to participate in a series of hands-on science activities under the guidance of researchers. This year’s visit was led by Jacqui Halpin and included an interactive look at a variety of Tasmanian rocks using petrological microscopes.

Staff and students played a major role in the University’s annual Open Day, which attracted over 10,000 people across all Tasmanian campuses and centres. Activities included a simulation of a mass extinction, where young and old were invited to throw meteorites (soft balls) at blow-up dinosaurs; a simulated volcanic eruption, with the aid of baking soda and red dye; and measurements of ‘seismic events’, created by jumping children and a sledgehammer.

CODES again played host to two groups from Taroona Scouts, who have been regular visitors to the Centre for a number of years. The groups comprised a mix of scouts, parents and scout leaders, who were guided through the lapidary section and various exhibits by Simon Stephens.

Two groups of students toured the Rock Library as part of the Cave ART initiative, which aims to demonstrate how art techniques are important to preserving fossil specimens, and creating large scientifically accurate displays.

The year also saw the usual mix of visits by groups representing various schools and age levels.

MEDIA

In addition to coverage in specialised media, CODES promoted the geosciences to the wider community via a variety of channels at state, national and international levels. Two of the main highlights were the extensive worldwide media coverage for Rebecca Carey’s research on the eruption at the Havre Volcano, and the work by Jacqui Halpin and Peter McGoldrick, which discovered a prehistoric link between Tasmania and North America. Coverage included radio and TV interviews, plus features in leading international publications and websites.

Other activities that attracted general media coverage were the public lecture by Dan Gregory; and the geology-related blog maintained by Stephanie Sykora, who was interviewed by ABC Radio. Jocelyn McPhie conducted four radio interviews on various subjects during the year, and also featured in a major article in the Sunday Tasmanian.

The Sixteen Legs exhibition, mentioned earlier, also received widespread coverage.

Top: Izzy von Lichtan with one of the giant spiders she helped build. Centre: Jacqui Halpin explains the intricacies of Tasmania’s rocks to students participating in Science Experience. Bottom: Jocelyn McPhie explains the geology of the local foreshore to Year 8 students.
INDUSTRY LINKS AND RESEARCH COLLABORATIONS

OBJECTIVES

• To be a research focus for the national and international minerals industry.
• Strategically collaborate with other top-level national and international research groups in the field of ore deposits, mineral exploration technologies and mineral processing.

CODES is recognised as a world leader in industry-linked, collaborative ore deposit research. Strong relationships have been developed with a range of industry partners and researchers who invest in, support, and contribute to, research projects. Fostering and growing these national and international collaborations is a key strategic focus.

INDUSTRY LINKS AND SYNERGIES

CODES has strong, enduring and mutually beneficial links with a group of major Australian and international mining companies. These links have been critical for funding CODES’ research, and for technology transfer to the mining and mineral exploration community.

In 2014, the group of CODES’ industry partners comprised of six Australian and international mining companies: Anglo American, AngloGold Ashanti, Buenaventura, Newcrest Mining, Rio Tinto, and Teck Resources.

The AMIRA P1060 team at the project’s final meeting.
Partner companies provide support of up to $75,000 in cash per year to the core research budget of the Centre. Senior representatives of these companies sit on the Science Planning Panel, along with other government and university researchers. This panel meets annually to discuss the results of CODES’ research and potential directions for new research.

INDUSTRY PARTNERSHIP OPPORTUNITIES

CODES offers a range of partnership opportunities that can be tailored to company requirements. Although all partnership agreements expired when CODES tenure as a funded ARC Centre of Excellence concluded at the end 2013, many companies have signed new agreements. These renewed commitments are testament to the value that companies place in a partnership with CODES, especially considering the current tough operating conditions in the minerals industry.

Major benefits of a partnership agreement include enhanced prospects of discoveries, optimisation of existing reserves, first call on geoscience graduates, and access to a world-class research team and state-of-the-art facilities. For further details of partnership opportunities, contact the Director, Bruce Gemmell: E. bruce.gemmell@utas.edu.au Tel. +61 3 6226 2893.

ROLE OF AMIRA INTERNATIONAL

AMIRA plays a vital role in facilitating the funding of collaborative research involving university research groups and the minerals industry. AMIRA has agreed to fund projects within the Centre, which will run over a period of three to four years. In 2014 it funded AMIRA P1060 Enhanced geochemical targeting in magmatic-hydrothermal systems.

RESEARCH COLLABORATIONS AND INTERNATIONAL VISITORS PROGRAM

In 2014, CODES further cemented its reputation for cultivating research collaborations with other Australian and international research organisations. Throughout the year, collaborative research was conducted with 56 international and 25 national organisations.
OBJECTIVES

• Involve end-users (exploration and mining companies) in research planning, research evaluation and research adoption.
• Promote technology transfer so that innovative research outcomes are accessible to end-users.
• Comply with the national principles of intellectual property management for publicly funded research.

TECHNOLOGY TRANSFER ACTIVITIES

CODES undertakes strategic and applied research into ore deposits (characterisation and context) and geometallurgy, and the development of innovative enabling technologies to support these research endeavours. These initiatives create knowledge, processes, methods and solutions for the minerals industry and ore deposit researchers – locally, nationally and internationally.

Research results and technical developments in the applied research modules are transferred to end-users via regular research meetings, research reports, monographs, books, digital presentations and software packages, where appropriate. In 2014, 82 research reports were presented to industry clients. Meetings were also held to present and discuss progress and adoption of research results.

PUBLICATIONS TARGETED AT END-USERS

CODES also delivers knowledge and applications to end-users and the wider scientific community through a selection of special publications that represent the culmination of major research efforts by the Centre’s staff. The following publications were sold during 2014.

• The geology and origin of Australia’s mineral deposits (2000). Authors: M Solomon and D Groves (1 copy).
• The geology of the Broken Hill Pb-Zn-Ag deposit, NSW, Australia (2006). Author: A Webster (6 copies).

SHORT COURSES, WORKSHOPS AND CONFERENCES FOR END-USERS

Short courses and workshops continued to play a key role in the Centre’s technology transfer activities. Throughout the year, a total of 16 courses were held at various locations around the world, including China, Indonesia, Myanmar, New Zealand and South Africa.

Total attendance by industry geologists, academic researchers and postgraduate students was 918, with 18 different presenters from CODES involved in delivering the lectures.
<table>
<thead>
<tr>
<th>Title</th>
<th>Presenters</th>
<th>No.</th>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTEC – Exploration Field Skills Mapping Camp</td>
<td>Robert Scott</td>
<td>20</td>
<td>Queenstown, Tasmania</td>
<td>9 – 16 February</td>
</tr>
<tr>
<td>Geophysics for Geologists and Engineers</td>
<td>Michael Roach, Hugh Tassell</td>
<td>8</td>
<td>CODES, Hobart</td>
<td>10 – 14 February</td>
</tr>
<tr>
<td>MTEC – Exploration Field Skills Mapping Camp</td>
<td>Rebecca Carey, Robert Scott, David Selley</td>
<td>20</td>
<td>Queenstown, Tasmania</td>
<td>9 – 16 March</td>
</tr>
<tr>
<td>Volcanology and Mineralisation in Volcanic Terrains</td>
<td>Rebecca Carey, Bruce Gemmell, Ross Large, Jocelyn McPhie</td>
<td>26</td>
<td>New Zealand and western Tasmania</td>
<td>16 – 30 March</td>
</tr>
<tr>
<td>Fluids in the Earth</td>
<td>Robert Bodnar, Leonid Danyushevsky, Maria-Luce Frezzotti, James Webster</td>
<td>110</td>
<td>Nanjing, China</td>
<td>10 – 14 May</td>
</tr>
<tr>
<td>VIEPS – Ore Deposit Models</td>
<td>David Cooke, Garry Davidson, Bruce Gemmell, Ross Large, Robert Scott, David Selley, Jeff Steadman</td>
<td>16</td>
<td>CODES, Hobart</td>
<td>12 – 16 May</td>
</tr>
<tr>
<td>VIEPS – Practical Igneous Petrology</td>
<td>Leonid Danyushevsky</td>
<td>11</td>
<td>CODES, Hobart</td>
<td>19 – 23 May</td>
</tr>
<tr>
<td>Exploration in Brownfields Terrains</td>
<td>Ron Berry, Andrew Cantwell, Matt Cracknell, Jacob de Lacey, Kim Derwer, David Green, John Holliday, Nic Jansen, Heidi Pass, Michael Roach, Robert Scott</td>
<td>22</td>
<td>CODES, Hobart</td>
<td>2 – 13 June</td>
</tr>
<tr>
<td>Advances in Geo-Logging</td>
<td>Tim Cartledge, Lee Evans, Graham Granger, David Green, Julie Hunt, Andrew McNeill, Jocelyn McPhie, Michael Roach, Robert Scott</td>
<td>28</td>
<td>Mineral Resources Tasmania, Hobart</td>
<td>8 – 11 September</td>
</tr>
<tr>
<td>Ore Deposit Models and Exploration Strategies</td>
<td>David Cooke, Stephen Cox, Garry Davidson, Bruce Gemmell, Scott Halley, Margy Hawke, Ross Large, Nick Oliver, Robert Scott, David Selley, Nathan Steeves</td>
<td>30</td>
<td>CODES, Hobart</td>
<td>20 – 31 October</td>
</tr>
<tr>
<td>Ore Deposit Models and Exploration</td>
<td>Zhaoshan Chang, Huayong Chen, David Cooke, Richard Goldfarb, David Leach, Chusi Lee, Joan Scott, Steven Scott, Noel White, Kahu Yang</td>
<td>450</td>
<td>Shanghang, China</td>
<td>9 – 16 November</td>
</tr>
<tr>
<td>VHMS Deposits in SE Asia and China</td>
<td>Khin Zaw</td>
<td>38</td>
<td>Gaja Mada University, Indonesia</td>
<td>20 November</td>
</tr>
<tr>
<td>Acid Rock Drainage Prediction – Geometallurgy</td>
<td>Julie Hunt, Bernd Lottermoser, Anita Parbhakar-Fox</td>
<td>20</td>
<td>University of Cape Town, South Africa</td>
<td>20 November</td>
</tr>
<tr>
<td>VHMS Deposits in SE Asia and China</td>
<td>Khin Zaw</td>
<td>54</td>
<td>Padjadjaran University, Indonesia</td>
<td>24 November</td>
</tr>
<tr>
<td>Orogenic and Skarn Deposits</td>
<td>Khin Zaw</td>
<td>23</td>
<td>Geological Agency, Bandung, Indonesia</td>
<td>25 November</td>
</tr>
<tr>
<td>Tectonics and Ore Deposits of SE Asia</td>
<td>Khin Zaw</td>
<td>42</td>
<td>Hinthada University, Myanmar</td>
<td>16 December</td>
</tr>
</tbody>
</table>
PERFORMANCE INDICATORS

PERFORMANCE AGAINST KPIs IN 2014–2018 STRATEGIC PLAN

<table>
<thead>
<tr>
<th></th>
<th>TARGET</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publications in international journals</td>
<td>50pa</td>
<td>55</td>
</tr>
<tr>
<td>Percentage of publications in high quality international journals</td>
<td>70%</td>
<td>76%</td>
</tr>
<tr>
<td>Reports to industry collaborators</td>
<td>80pa</td>
<td>82</td>
</tr>
<tr>
<td>Special Issues and/or research monographs</td>
<td>1 per 2 years</td>
<td>2</td>
</tr>
<tr>
<td>Invitations to give keynote conference presentations</td>
<td>10pa</td>
<td>3</td>
</tr>
<tr>
<td>Papers at national/international meetings</td>
<td>70pa</td>
<td>66</td>
</tr>
<tr>
<td>Research Training and Professional Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of HDR students attracted from interstate</td>
<td>25%</td>
<td>45%</td>
</tr>
<tr>
<td>Percentage of HDR students attracted from overseas</td>
<td>65%</td>
<td>48%</td>
</tr>
<tr>
<td>Number of Honours students in CODES’ modules</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Number of HDR students in CODES’ modules</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>Percentage of students in projects linked with industry</td>
<td>80%</td>
<td>67%</td>
</tr>
<tr>
<td>Professional short courses/workshops for industry</td>
<td>4pa</td>
<td>16</td>
</tr>
<tr>
<td>International, National and Regional Links and Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODES’ national or international conferences/workshops</td>
<td>1 per 2 years</td>
<td>0</td>
</tr>
<tr>
<td>Registrants at CODES’ conferences/workshops</td>
<td>600pa</td>
<td>918</td>
</tr>
<tr>
<td>End-user Links</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of meetings with industry representatives</td>
<td>15pa</td>
<td>20</td>
</tr>
<tr>
<td>National Benefit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODES’ research has input into a major mineral discovery</td>
<td>1 per 5 years</td>
<td>9 in 26 years</td>
</tr>
</tbody>
</table>
PhD student Qiuyue Huang at Dalton’s Sand Pit, New Zealand, during the Volcanology and Mineralisation in Volcanic Terrains Master of Economic Geology short course.
Total CODES income was $5.8 million (see Table 1). This was derived principally from UTAS (41%) and industry (30%) (see Figure 1). The main income streams over time are compared in Figure 2, showing the cessation of ARC Centre Grant funding at the end of 2013, as well as a reduction in industry funding, which coincides with the downturn in the mining industry.

SUMMARY OF THE MAIN INCOME STREAMS TO CODES IN 2014:

- **Commonwealth Government income:** The $522k funding in this category was, once again, an increase compared to the previous year, and is now related to four State Survey (GSWA & GSSA) projects, as well as two projects funded by CSIRO.

- **Industry income:** Total industry funding was $1.8 million, down from 2013. Much of this decrease was due to the recent completion of several large AMIRA projects, with no new AMIRA projects having yet commenced. However, it should be noted that several new AMIRA projects are in the pipeline.

- **Host institution support:** Funding from UTAS in 2014 was up compared to the adjusted* figure for 2013, mostly due to an increase in PhD related support. UTAS funding relates primarily to research salaries, PhD scholarships and income earned by the Centre from research output.

*It was incorrectly stated in the previous Annual Report that UTAS income for 2013 was $1,626,301. This figure should have been $2,371,982, which is now reflected in the adjusted figures and graphics contained in this current report.

2015 INCOME ESTIMATES

With the end of ARC Centre Grant funding, the total income to CODES in 2014 was approximately half of that in 2013. However, later in the year, CODES was successful in winning an ARC Industrial Transformation Research Hub. Funding related to this grant is expected to flow into CODES by the middle of 2015, bolstering research funds within the Centre. Industry projects that will be part of the Hub are expected to come on-line shortly after the Hub’s official commencement (e.g. AMIRA P1153).
TABLE 1
CASH INCOME FINANCIAL STATEMENT 2014

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC Grants</td>
<td></td>
</tr>
<tr>
<td>Discovery Grants – income returned</td>
<td>-85</td>
</tr>
<tr>
<td>Other Commonwealth Government</td>
<td></td>
</tr>
<tr>
<td>Specific Projects</td>
<td>515,404</td>
</tr>
<tr>
<td>Student Projects</td>
<td>7,000</td>
</tr>
<tr>
<td>State Government</td>
<td></td>
</tr>
<tr>
<td>Specific Projects</td>
<td>49,476</td>
</tr>
<tr>
<td>Student Projects</td>
<td>28,000</td>
</tr>
<tr>
<td>Industry/private</td>
<td></td>
</tr>
<tr>
<td>AMIRA International Projects</td>
<td>224,890</td>
</tr>
<tr>
<td>CODES Industry Partners</td>
<td>367,500</td>
</tr>
<tr>
<td>Minerals Council of Australia (MCA/MTEC)</td>
<td>63,800</td>
</tr>
<tr>
<td>Directly Funded Research Projects</td>
<td>782,698</td>
</tr>
<tr>
<td>Directly Funded Student Projects</td>
<td>304,281</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>32,195</td>
</tr>
<tr>
<td>Contracts/consultancies/revenue raising</td>
<td></td>
</tr>
<tr>
<td>Short Courses</td>
<td>120,464</td>
</tr>
<tr>
<td>Book Sales</td>
<td>33,113</td>
</tr>
<tr>
<td>Miscellaneous (incl. Analytical Services)</td>
<td>724,939</td>
</tr>
<tr>
<td>University of Tasmania – host institution support</td>
<td></td>
</tr>
<tr>
<td>Operating Grant</td>
<td>1,135,295</td>
</tr>
<tr>
<td>Scholarships and Tuition Fee Waivers</td>
<td>1,056,288</td>
</tr>
<tr>
<td>Strategic Projects</td>
<td>164,073</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>64,369</td>
</tr>
<tr>
<td>Other income sources/interest</td>
<td></td>
</tr>
<tr>
<td>Overseas Governments</td>
<td>20,000</td>
</tr>
<tr>
<td>Society of Economic Geologists – Student Scholarships</td>
<td>13,037</td>
</tr>
<tr>
<td>Student Support</td>
<td>59,056</td>
</tr>
<tr>
<td>Specific Projects</td>
<td>68,393</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>8,040</td>
</tr>
<tr>
<td>Total annual income</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,842,223</td>
</tr>
</tbody>
</table>

2014 | FINANCES | 81
FIGURE 1
TOTAL CASH INCOME 2014

University of Tasmania 41%

Industry/private 30%

Contracts/consultancies/revenue raising 15%

Other Commonwealth Government 9%

State Government 1%

Other income sources/interest 3%

Industry/private 30%

University of Tasmania 41%

Contracts/consultancies/revenue raising 15%

Other Commonwealth Government 9%

State Government 1%

Other income sources/interest 3%
NOTES TO, AND FORMING PART OF, THE FINANCIAL STATEMENTS FOR 2014

The financial pages of this Annual Report were prepared by Helen Scott (Senior Finance Officer – Science Engineering and Technology Hub). Data for the financial statements was extracted from UTAS systems, particularly its Finance System. All Financial Statements shown here have been reviewed by UTAS Central Finance.

INCOME STATEMENT EXPLANATIONS

The income figures in Table 1 represent actual income recorded in the UTAS Finance System or transferred internally from UTAS to CODES during 2014, with the following exceptions:

- $85 of unspent ARC Discovery project funds were returned to the ARC, resulting in a negative income value for 2014.
- $259k of AMIRA funds, related to the P843A and P1060 projects, were deposited into UTAS accounts, but were later transferred to research collaborators associated with these joint research projects. These funds will be listed as AMIRA income to those collaborators, and can therefore not be listed as income to CODES.

COMPARISON GRAPH EXPLANATIONS

The income figures in Figure 2 show all income received to CODES from various sources. However, the graph has been adjusted slightly to allow for the $85 of unspent Discovery Grant income that was returned to the ARC in 2014.

Note: ARC Centre funding ended 2013.
2014 CODES’ PUBLICATIONS

CHAPTERS IN BOOKS (5)

Names in bold are authors that affiliated their articles to CODES

REFEERED JOURNAL ARTICLES (55)

Names in bold are authors that affiliated their articles to CODES

La Cruces mine in Spain – one of the stops on the SEG Student Chapter’s field trip to the Iberian Pyrite belt.

Belousov, I., Large, R., Meffre S., Danyushevsky, L., and Beardsmore, T., 2014, Pyrite trace element compositions for ore deposits from Western Australia: Goldschmidt 2014, Sacramento, USA, 8–13 June.

Cracknell, M.J., and Reading, A.M., 2014, Unsupervised clustering of continental-scale geophysical and geochemical data using Self-Organising Maps, 2014:

Cropp, A., Goodall, W., Bradshaw, D., Hunt, J., and Berry, R., 2014, Communicating and integrating geometallurgical data along the mining value chain: IMPC Conference, Santiago, Chile, 20–24 October.

Marsaglia, K.M., Barth, A.P., Brandl, P.A., Hickey-Vargas, R., Jiang, F., Kanayama, K., Kusano, H.L., McCarthy,

Sanematsu, K., Yoshiaki, K., Manaka, T., Khin Zaw, and Watanabe, Y., 2014, Geochemical and mineralogical characteristics of ion-adsorption type REE ores in South China and Southeast Asia: 21st General Meeting of the International Mineralogical Association, Gauteng, Republic of South Africa, 3 September.

Sykora, S., Selley, D., Cooke, D.R., and Harris, A.C., 2014, Insights from anhydrite vein kinematics to the structural evolution of Lihir; a giant epithermal Au deposit and dissected volcanic edifice, PNG: Biennial Conference of the Specialist Group for Tectonics and Structural Geology (SGTSG), Thredbo, Australia, 2–8 February, GSA Abstracts no. 109, p.86.

INVITED KEYNOTE ADDRESSES (3)

RESEARCH REPORTS TO INDUSTRY/GOVERNMENT AGENCIES (82)

Berry, R., 2014, Frieda River Cu/Au porphyry deposit: Controls on geochemistry and mineralogy deportment by size: Confidential report to CRC ORE, 14 p.

Berry, R., 2014, Los Bronces: Controls on geochemistry and mineralogy deportment by size: Confidential report to CRC ORE, 21 p.

APPENDICES

CODES POSTGRADUATE STUDENTS 2014

GRADUATE DIPLOMA OF SCIENCE (1)

<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lydia Wells^</td>
<td>Noble</td>
<td>Long-term assessment of the weathering characteristics of sulfide materials</td>
<td>CRC ORE</td>
</tr>
</tbody>
</table>

BACHELOR OF SCIENCE (HONOURS) (19)

<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Anderson^</td>
<td>Roach</td>
<td>Analysis of wide angle reflection and refraction data, Mount Woods area, South Australia</td>
<td>OZ Minerals</td>
</tr>
<tr>
<td>Wayne Baker</td>
<td>Cas (Monash), McPhie</td>
<td>Lithostratigraphy, facies architecture, alteration and geochemistry of the footwall to the DeGrussa volcanic hosted massive sulfide deposit</td>
<td>Sandfire Resources</td>
</tr>
<tr>
<td>Anthony Benn^</td>
<td>Baker, Cooke</td>
<td>Geology of the Racecourse Prospect, NSW: Economic geology, geochronology, geochemistry, and paragenesis of a Cu-mineralised I-type granitoid suite</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Natnaree Chandraprasert^</td>
<td>Carey, Scott</td>
<td>Stratigraphy, structure and volcanology of the sequence between the Mount Black and Rosebery faults, north-end Rosebery Mine Lease, western Tasmania</td>
<td>MMG</td>
</tr>
<tr>
<td>Ashby Cooper^</td>
<td>Reading, Direen</td>
<td>The crustal structure of the Bass Strait region from combined passive seismic methods</td>
<td>ARC</td>
</tr>
<tr>
<td>Tobias Erskine^</td>
<td>Zaw, Manaka</td>
<td>Geology, structure and mineralisation characteristics of the Modi Taung gold deposit, Myanmar</td>
<td>Ore Deposits of SE Asia Project, National Prosperity Company</td>
</tr>
<tr>
<td>Alistair Harvey^</td>
<td>Roach, Manaka</td>
<td>Depth to basement below the Bowen and Surat Basins, Chinchilla, Queensland</td>
<td>QGC</td>
</tr>
<tr>
<td>Wasim Hashmi^</td>
<td>Stepanov, Meffre, Cooke</td>
<td>Sn-W-Ta-Nb in micas and their relationship to granite fractionation in western Tasmania</td>
<td>ES</td>
</tr>
<tr>
<td>Melanie Haycroft</td>
<td>G.Davidson</td>
<td>The eastern mineralisation, Broken Hill, NSW</td>
<td>CBH Resources</td>
</tr>
<tr>
<td>Travis Holmes</td>
<td>Cooke</td>
<td>Geometry, timing and controls on alteration and mineralisation at the Big Wilson Tin Prospect, NW Tasmania</td>
<td>Venture Minerals</td>
</tr>
<tr>
<td>Stuart Hughes^</td>
<td>Meffre, Chase (MAS)</td>
<td>Quantifying and characterising heavy metal contamination and sedimentation rates in the Derwent Estuary</td>
<td>Nyrstar, Derwent Estuary Program, IMAS</td>
</tr>
<tr>
<td>Laura Jackson^</td>
<td>Parbhakar-Fox, G.Davidson, Danyushevsky</td>
<td>Geochemical and mineralogical characterisation of tailings: Evaluating the benefits of water covers as a rehabilitation strategy, Savage River Mine, Tasmania</td>
<td>DPIPWE, Grange Resources</td>
</tr>
<tr>
<td>Will McAdam</td>
<td>Roach, Duffett (MRT)</td>
<td>Geophysical investigation of the Mole Creek area, Tasmania</td>
<td>MRT</td>
</tr>
<tr>
<td>Supitchaya Paipana^</td>
<td>Zaw, Salam</td>
<td>Geochemistry and mineralisation characteristics of Bo Thong antimony-gold deposit, Chonburi province, Eastern Thailand</td>
<td>Ore Deposits of SE Asia Project</td>
</tr>
<tr>
<td>Naomi Potter^</td>
<td>Carey, V.Kamenetsky</td>
<td>The eruption dynamics of the 23rd February 2013 event at Mt Etna</td>
<td>ARC</td>
</tr>
<tr>
<td>Andrew Strochnetter^</td>
<td>Noble, Chase (IMAS)</td>
<td>Circulation of the southwest Pacific Ocean during the penultimate deglaciation</td>
<td>UTAS</td>
</tr>
<tr>
<td>Jonathon Traynor</td>
<td>Zaw, Large</td>
<td>Geology, structure and mineralisation of Shwezin vein, Modi Taung, Myanmar</td>
<td>National Prosperity Company</td>
</tr>
<tr>
<td>Matthew Whitten</td>
<td>Meffre</td>
<td>Kone Formation (New Caledonia) - a sedimentary record of the final stages of Gondwana breakup</td>
<td>MRT</td>
</tr>
<tr>
<td>Jie Yu^</td>
<td>Roach, Reading, Duffett (MRT)</td>
<td>A geophysical investigation of the Mt Lindsay-Lynch Hill area, western Tasmania</td>
<td>MRT</td>
</tr>
</tbody>
</table>

^Graduated.
MASTER OF ECONOMIC GEOLOGY (52)

<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Adams</td>
<td>Cooke</td>
<td>coursework only</td>
<td>Student Supervisors Project Support</td>
</tr>
<tr>
<td>Fabian Baker</td>
<td>Cooke</td>
<td>Amulsar HSE Au deposit, Armenia</td>
<td>Lydian International</td>
</tr>
<tr>
<td>Luziane Barbosa De Souza</td>
<td>Scott</td>
<td>Webbs silver project, NSW</td>
<td>Centric Minerals Management</td>
</tr>
<tr>
<td>Billy Beas Caceres</td>
<td>McPhie, Gemmell</td>
<td>Petrography and mineragraphy of volcanic rocks and age dating of La Zanja Mine, Peru</td>
<td>Minera La Zanja SRL</td>
</tr>
<tr>
<td>Lynelle Beinke*</td>
<td>coursework only</td>
<td>Heathgate Resources</td>
<td></td>
</tr>
<tr>
<td>Cesar Calderon-Tipiani</td>
<td>Gemmell</td>
<td>Chanca low sulfidation deposit, Peru</td>
<td>Buenaventura</td>
</tr>
<tr>
<td>Wayne Carter</td>
<td>coursework only</td>
<td>Silver Lake Resources</td>
<td></td>
</tr>
<tr>
<td>Glen Cathers</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloe Cavill</td>
<td>G.Davidson</td>
<td>Geochemical classification of orebearing/metalliferous fluids of the Costerfield region</td>
<td>Mandalay Resources</td>
</tr>
<tr>
<td>Djohanne Celiz</td>
<td>Cooke</td>
<td>The geology, alteration, and mineralisation of the Sagay deposit in northern Negros, Philippines</td>
<td>Freeport-McMoran Exploration Corporation</td>
</tr>
<tr>
<td>Corrie Chamberlain^</td>
<td>coursework only</td>
<td>Minera IRL Patagonia S.A.</td>
<td></td>
</tr>
<tr>
<td>Glen Diemar^</td>
<td>V.Kamenetsky, Ehrig, McPhie</td>
<td>Geochronology of hydrothermal REE minerals and their relationships with economic mineralisation at the Olympic Dam breccia complex, South Australia</td>
<td>BHP Billiton Olympic Dam</td>
</tr>
<tr>
<td>Lucas Doherty</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumba Donzo</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter Duerden</td>
<td>Cooke, Crawford</td>
<td>TBA</td>
<td>Alkane</td>
</tr>
<tr>
<td>Pablo Farias</td>
<td>Davidson</td>
<td>TBA (An aspect of uranium deposits in NT)</td>
<td>Cameco Australia</td>
</tr>
<tr>
<td>Maria Lourdes M. Faustino</td>
<td>Cooke</td>
<td>Pli-pleistocene intrusive history and ore paragenesis of Bayugo porphyry Cu-Au deposit Surgiao Del Norte, Philippines</td>
<td>DFAT, Philex Mining</td>
</tr>
<tr>
<td>Franco Ferneyra</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arga Firmansyah</td>
<td>Cooke</td>
<td>The Pangulir porphyry-epithermal prospect, Indonesia</td>
<td>PT, Pamapersada Nusantara</td>
</tr>
<tr>
<td>Greg Fortune§</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phil Gilmore</td>
<td>G.Davidson</td>
<td>An aspect of the geology of the Koonenberry Belt, NSW</td>
<td>Geological Survey of NSW</td>
</tr>
<tr>
<td>David Groombridge</td>
<td>coursework only</td>
<td></td>
<td>Silver Lake Resources</td>
</tr>
<tr>
<td>Rachel Harrison^</td>
<td>Cooke</td>
<td>Tujuh Bakit Cu-Au porphyry-epithermal deposit, Java Indonesia</td>
<td>Intrepid Mines</td>
</tr>
<tr>
<td>Kyle Hodges</td>
<td>coursework only</td>
<td></td>
<td>Sirius Resources</td>
</tr>
<tr>
<td>Jonathon Hove</td>
<td>Cooke</td>
<td>An aspect of the geology of North Parkes, NSW</td>
<td>Northparkes Mine</td>
</tr>
<tr>
<td>Danny Huisman</td>
<td>coursework only</td>
<td></td>
<td>BHP Billiton</td>
</tr>
<tr>
<td>Oliver Judd§</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas Langley</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xuan Truong Le*</td>
<td>Zaw</td>
<td>Mineralisation of Me Xi gold deposit, Vietnam</td>
<td>Axiom Mining, Hanoi University of Mining and Geology, Ore Deposits of SE Asia Project</td>
</tr>
<tr>
<td>Esther Little</td>
<td>coursework only</td>
<td></td>
<td>DGR Global, Archer Resources</td>
</tr>
<tr>
<td>Chantelle Lower</td>
<td>Ehrig (BHP Billiton) and TBA</td>
<td>An aspect of the geology of the Olympic Dam deposit</td>
<td>BHP Billiton</td>
</tr>
<tr>
<td>Thomas Lucas</td>
<td>coursework only</td>
<td></td>
<td>Ivanhoe Australia</td>
</tr>
<tr>
<td>Neil Macalalad*</td>
<td>Cooke</td>
<td>Geology, alteration, mineralisation and vectoring to porphyry centre in the Aiasasjur prospect, Irian Jaya, Indonesia</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Imam Malik</td>
<td>coursework only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane Maxwell§</td>
<td>coursework only</td>
<td></td>
<td>Peabody Energy Australia</td>
</tr>
</tbody>
</table>

*Degree completed, not yet graduated. ^Graduated. §Withdrawn/terminated.
<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebecca McLelland</td>
<td>Scott</td>
<td>Gold mineralisation at the Reefton Goldfield, New Zealand</td>
<td>Oceana Gold</td>
</tr>
<tr>
<td>Joanne Morrison</td>
<td>Cooke</td>
<td>TBA</td>
<td>Newcrest Mining</td>
</tr>
<tr>
<td>Michael Musialike*</td>
<td>Scott</td>
<td>Controls on gold mineralisation at Mataia and Dunrobin, Zambia (Luirigold)</td>
<td>Copperbelt University</td>
</tr>
<tr>
<td>Saranya Nuanla-Ong</td>
<td>Zaw</td>
<td>Paragenesis, pyrite geochemistry and ore fluids at Htongyi gold veins, Myanmar</td>
<td>Ore Deposits of SE Asia Project, National Prosperity Company</td>
</tr>
<tr>
<td>Joshua Phillips^</td>
<td></td>
<td>coursework only</td>
<td>Newcrest Mining</td>
</tr>
<tr>
<td>Chris Piggott</td>
<td></td>
<td>coursework only</td>
<td>Sirius Resources</td>
</tr>
<tr>
<td>Tatjana Pucko^</td>
<td></td>
<td>coursework only</td>
<td>Inova Resources</td>
</tr>
<tr>
<td>Michelle Puska^</td>
<td></td>
<td>coursework only</td>
<td>Inova Resources</td>
</tr>
<tr>
<td>Scott Randall^</td>
<td></td>
<td>coursework only</td>
<td>AngloGold Ashanti</td>
</tr>
<tr>
<td>Alan Riles</td>
<td></td>
<td>coursework only</td>
<td>Riles Integrated Resource Management, AMC</td>
</tr>
<tr>
<td>Stephanie Robertson</td>
<td></td>
<td>coursework only</td>
<td>Inova Resources</td>
</tr>
<tr>
<td>Markus Staubmann</td>
<td></td>
<td>coursework only</td>
<td>Sirius Resources</td>
</tr>
<tr>
<td>Edward Summerhayes*</td>
<td></td>
<td>coursework only</td>
<td>Silver Lake Resources</td>
</tr>
<tr>
<td>Chris Thaus</td>
<td></td>
<td>coursework only</td>
<td>Copper Mines of Tasmania</td>
</tr>
<tr>
<td>Nevl Vanderslink</td>
<td></td>
<td>coursework only</td>
<td>Arrium Mining</td>
</tr>
<tr>
<td>Peter Watson</td>
<td></td>
<td>coursework only</td>
<td>Gnomic Exploration Services</td>
</tr>
<tr>
<td>Onur Yilmaz</td>
<td>Cooke</td>
<td>The Mount Carrington epithermal Au and Ag-Au deposits, NSW: Potential for porphyry-style mineralisation</td>
<td></td>
</tr>
</tbody>
</table>

MASTER OF EXPLORATION GEOSCIENCE (1)

<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jo Condon</td>
<td>Gemmell</td>
<td>Ore types of the DeGrussa and Conductor 1 Ore lenses of the DeGrussa VHMS deposit, Western Australia</td>
<td>Sandfire</td>
</tr>
</tbody>
</table>

MASTER OF SCIENCE (3)

<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myall Hingee§</td>
<td>Reading, Fullager (Fullagar Geophysics), Roach</td>
<td>Approximate Inverse Mapping (AIM) inversion of Transient Electromagnetic (TEM) data</td>
<td>AMIRA P1022, UTAS</td>
</tr>
<tr>
<td>Paula Montoya^</td>
<td>Berry, Hunt</td>
<td>Comminution studies: La Colosa case study</td>
<td>AngloGold Ashanti, GeM Project</td>
</tr>
<tr>
<td>Stephanie Sykora</td>
<td>Cooke, Selley, Jansen</td>
<td>The geological, structural, geochemical and genetic significance of anhydrite veins and cemented breccias at the Lihir gold deposit, Papua New Guinea</td>
<td>Newcrest Mining, UTAS</td>
</tr>
</tbody>
</table>

DOCTOR OF PHILOSOPHY (51)

<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olga Apukhtina</td>
<td>V.Kamenetsky, McPhie, Maas (UMelb)</td>
<td>Stable isotopes (C, S and O) and halogens (Cl, F) in gangue and ore minerals at Olympic Dam: Evaluation of mantle and crustal contributions to mineralisation</td>
<td>BHP Billiton Olympic Dam, UTAS</td>
</tr>
<tr>
<td>Mohd Basril Iswadi Bin Basori*</td>
<td>Zaw, Large</td>
<td>Geology of volcanic hosted massive sulfide (VHMS) deposits in Central Belt, Peninsular Malaysia</td>
<td>Malaysian Govt, Ore Deposits of SE Asia Project</td>
</tr>
<tr>
<td>Heidi Berkenbosch</td>
<td>Gemmell, McNeil (MRT), Christie (GNS Science)</td>
<td>Geochemistry of hydrothermal mineral chimneys from Brothers volcano, Kermadec Arc</td>
<td>CoE, GNS Science, UTAS, SEG, AustIMM, Australian Synchrotron</td>
</tr>
<tr>
<td>Ben Cave</td>
<td>Large, Danyushevsky</td>
<td>A metamorphic source for tungsten in metasedimentary-hosted orogenic gold deposits</td>
<td>UTAS, CoE</td>
</tr>
</tbody>
</table>

*Degree completed, not yet graduated. ^Graduated. §Withdrawn/terminated.
<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jing Chen</td>
<td>Cooke, Zhang</td>
<td>The geology, mineralisation, alteration and fluid evolution of Zijinshan ore field, Fujian Province, China</td>
<td>UTAS, Chinese Gov</td>
</tr>
<tr>
<td>Alexander Cherry</td>
<td>V.Kamenetsky, McPhie, Ehrig (BHPBilliton)</td>
<td>Petrology, provenance and composition of bedded sedimentary facies in the Olympic Dam deposit</td>
<td>UTAS</td>
</tr>
<tr>
<td>Matt Cracknell^</td>
<td>Reading, Foster</td>
<td>Machine learning for geological mapping: Algorithms and applications</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Angela Escolme</td>
<td>Cooke, Hunt, Berry</td>
<td>Ore characterisation and geometallurgical modelling at the Productora Cu-Au-Mo deposit, Chile</td>
<td>UTAS, Hot Chili, CSIRO, AusIMM</td>
</tr>
<tr>
<td>Esmaeil Eshaghi</td>
<td>Reading, Roach</td>
<td>Petrophysical and geophysical investigation of western Tasmania</td>
<td>UTAS</td>
</tr>
<tr>
<td>Jodi Fox</td>
<td>McPhie, Carey</td>
<td>Basaltic volcanic successions in Tasmania and on Heard Island</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Martin Gal</td>
<td>Reading, Ellingsen (Physics)</td>
<td>The development of array and single station methods for the analysis of on-land ambient seismic signals from deep ocean storms and coastal sources</td>
<td>UTAS</td>
</tr>
<tr>
<td>Victor Hugo</td>
<td>Cooke, Gemmell, McPhie</td>
<td>Palmarejo carbonate-base metal epithermal Ag-Au district, Chihuahua, Mexico</td>
<td>IPRS, Coeur d’Alene</td>
</tr>
<tr>
<td>Sarah Gilbert</td>
<td>Danyushevsky, Large</td>
<td>Development of analytical methods and standard reference materials for the determination of trace element concentrations and isotopic ratios in sulfur-rich minerals and silicate glasses</td>
<td>CoE, CODES, Agilent Technologies</td>
</tr>
<tr>
<td>Dan Gregory^</td>
<td>Large, Meffre, Bull</td>
<td>The trace element composition of sedimentary pyrite: Factors affecting uptake and uses of the data for determining paleo-ocean conditions</td>
<td>CSIRO, CoE, UTAS</td>
</tr>
<tr>
<td>JianXiang Guan^</td>
<td>Danyushevsky, Crawford</td>
<td>Origin of associated magnetite and sulfide mineralisation in large gabbroic intrusions: A LA-ICP-MS study of minerals and melt inclusions from the Panzhihua and Taihe intrusions in Emeishan LIP and Duluth Complex</td>
<td>CoE, UTAS</td>
</tr>
<tr>
<td>Cassady Harraden</td>
<td>Meffre, Berry, Roach, Hunt</td>
<td>Geometallurgical project in Tanzania</td>
<td>UTAS</td>
</tr>
<tr>
<td>Sarah Gilbert</td>
<td>Danyushevsky, Large</td>
<td>Development of analytical methods and standard reference materials for the determination of trace element concentrations and isotopic ratios in sulfur-rich minerals and silicate glasses</td>
<td>CoE, CODES, Agilent Technologies</td>
</tr>
<tr>
<td>Dan Gregory^</td>
<td>Large, Meffre, Bull</td>
<td>The trace element composition of sedimentary pyrite: Factors affecting uptake and uses of the data for determining paleo-ocean conditions</td>
<td>CSIRO, CoE, UTAS</td>
</tr>
<tr>
<td>JianXiang Guan^</td>
<td>Danyushevsky, Crawford</td>
<td>Origin of associated magnetite and sulfide mineralisation in large gabbroic intrusions: A LA-ICP-MS study of minerals and melt inclusions from the Panzhihua and Taihe intrusions in Emeishan LIP and Duluth Complex</td>
<td>CoE, UTAS</td>
</tr>
<tr>
<td>Cassady Harraden</td>
<td>Meffre, Berry, Roach, Hunt</td>
<td>Geometallurgical project in Tanzania</td>
<td>UTAS</td>
</tr>
<tr>
<td>Rachel Harrison</td>
<td>Cooke</td>
<td>Tujuh Bakit Cu-Au porphyry-epithermal deposit, Java Indonesia</td>
<td></td>
</tr>
<tr>
<td>Margy Hawke</td>
<td>Gemmell, Large, G.Davidson</td>
<td>Geology of the DeGrussa Cu-Au-Ag volcanic-hosted massive sulfide deposit, Western Australia</td>
<td>UTAS, Sandfire Resources</td>
</tr>
<tr>
<td>Jacob Heathcote</td>
<td>Scott, G.Davidson</td>
<td>Gold distribution and association at the Kansashi copper-gold deposit Zambia: Processes responsible for gold precipitation and implications for ore zone delineation and recovery</td>
<td>First Quantum Minerals</td>
</tr>
<tr>
<td>Sam Holt</td>
<td>Carey, McPhie, Allen</td>
<td>Understanding of basaltic eruption dynamics and mechanisms: Effusive and explosive eruptions in Hawaii</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Wei Hong</td>
<td>Cooke, Zhang, Fox</td>
<td>Magmatic-hydrothermal volatile exsolution and mineralisation in Tasmanian Sn granites</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Qiuyue Huang</td>
<td>V.Kamenetsky, McPhie, Allen</td>
<td>Mafic dykes at Olympic Dam</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Carlos Andres</td>
<td>Cooke, White, Baker</td>
<td>Bantug lithocap, Negros Island, Philippines: Mineralogy, textures, and chemistry</td>
<td>UTAS Foundation, AMIRA P1060</td>
</tr>
<tr>
<td>Jameson</td>
<td>Large, Meffre, McGoldrick</td>
<td>Trace elements in metalliferous black shales</td>
<td>UTAS, CoE, Mining Institute of Scotland, ANZIC-IODP, ECORD, NERF, Talvivaara Mining, GTK</td>
</tr>
<tr>
<td>Teera Karmvong*</td>
<td>Zaw, Meffre</td>
<td>Geology and genesis of porphyry-skarn Cu-Au deposits at the Northern Loei and Truong Son Fold Belts, Thailand and Laos</td>
<td>IPRS, ARC Linkage, CoE, SEG, PanAust, Ore Deposits of SE Asia Project</td>
</tr>
<tr>
<td>Stephen Kuhn</td>
<td>Reading, Cracknell, Roach</td>
<td>The application of machine learning algorithms for lithological mapping and minerals targeting in key ore deposit settings</td>
<td></td>
</tr>
<tr>
<td>Roisin Kyne^</td>
<td>Berry, Gemmell, Scott</td>
<td>Genesis and structural architecture of the CSA Cu-Ag (Pb-Zn) mine, Cobar, New South Wales</td>
<td>UTAS, Cobar Management</td>
</tr>
<tr>
<td>Erin Lawlis</td>
<td>Cooke, Jansen</td>
<td>Au-bearing pyritic ore of Lihir, Papua New Guinea: Its physicochemical character and nature of the causative fluids</td>
<td>Newcrest Mining, UTAS, SEG</td>
</tr>
</tbody>
</table>

*Degree completed, not yet graduated. ^Graduated. §Withdrawn/terminated.
<table>
<thead>
<tr>
<th>Student</th>
<th>Supervisors</th>
<th>Project</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elena Lounejeva</td>
<td>Danyushevsky, Large</td>
<td>Geochemical signature of syngenetic and diagenetic pyrite from marine sediments as a paleo-environmental tool</td>
<td>ARC, CODES</td>
</tr>
<tr>
<td>Alexey Lygin</td>
<td>V.Kamenetsky, McNeill (MRT)</td>
<td>The geology, geochemistry and genesis of the Avebury Ni deposit, Tasmania</td>
<td>CoE, UTAS, MMG Exploration</td>
</tr>
<tr>
<td>Charles Makoundi</td>
<td>Zaw, Large</td>
<td>Geochemistry of Phanerozoic black shales in Peninsular Malaysia: Relationships to gold mineralisation</td>
<td>IPRS, UTAS, Ore Deposits of SE Asia Project</td>
</tr>
<tr>
<td>Takayuki Manaka</td>
<td>Zaw, Meffre</td>
<td>Geology and mineralisation characteristics of the Phuoc Son goldfields, central Vietnam</td>
<td>CoE, UTAS, Ore Deposits of SE Asia Project, SEG, Besra</td>
</tr>
<tr>
<td>Claire McMahon</td>
<td>G.Davidson</td>
<td>Distribution of, and controls upon, pyrite trace element content of hydrothermal alteration zones at Hercules VHMS ore deposit, Tasmania and NICO IOCG ore deposit, Northwest Territories, Canada</td>
<td>ARC</td>
</tr>
<tr>
<td>Larriana Morgan</td>
<td>G.Davidson, Bull, Selley</td>
<td>Controls on copper mineralising process in the central McArthur Basin, NT (Redbank Package), and its implications for the metallogeny of extensional basins</td>
<td>NTGS, UTAS</td>
</tr>
<tr>
<td>Peter Morse</td>
<td>Reading, Lueg (Computing)</td>
<td>Combined computational and human interaction strategies in knowledge generation from spatial and spatiotemporal information</td>
<td>UTAS, CODES</td>
</tr>
<tr>
<td>Indrani Mukherjee</td>
<td>Large, Halpin, Meffre</td>
<td>Pyrite trace element chemistry of black shales of the “boring billion” period</td>
<td>UTAS, SEG, AMIRA</td>
</tr>
<tr>
<td>Jacob Mulder</td>
<td>Meffre, Halpin, Berry, Scott</td>
<td>From Nuna to Gondwana: An evaluation of the early tectonic history of Tasmania</td>
<td>UTAS, CODES</td>
</tr>
<tr>
<td>Evan Orovian</td>
<td>Cooke, Harris</td>
<td>Geology, geochemistry and genesis of the Namosi porphyry Cu-Au deposits, Fiji</td>
<td>CODES, Newcrest Mining, SEG</td>
</tr>
<tr>
<td>Richelle Pascual</td>
<td>V.Kamenetsky, Noble, Goernann</td>
<td>The characteristics and role of colloidal silica fluids in the formation of the Gieves Siding Zn-Pb prospect, western Tasmania</td>
<td>CoE, UTAS, CRC ORE</td>
</tr>
<tr>
<td>Pedro Pereira da Fonseca</td>
<td>McPhie, McNeill (MRT), Relvas(geoFcUL)</td>
<td>Facies analysis and correlations in complex mineralised submarine volcanic successions: Mount Read Volcanics, western Tasmania</td>
<td>Portuguese Govt (FCT), CoE</td>
</tr>
<tr>
<td>Jose Meulen Piquer Romero*</td>
<td>Cooke, Berry, Scott</td>
<td>Structural geology of the Andes of Central Chile: Evolution, controls on magmatism and the emplacement of giant ore deposits and implications for exploration</td>
<td>Chilean Govt, Codelco, AMIRA P1060</td>
</tr>
<tr>
<td>Daniele Redi*</td>
<td>Danyushevsky, De Vivo (UNINA), Lima (UNINA)</td>
<td>A contribution to the understanding of the eruptive behaviour of Somma-Vesuvius; A mineral chemistry perspective</td>
<td>University of Naples, CoE</td>
</tr>
<tr>
<td>Marc Rinne*</td>
<td>Cooke, Jansen</td>
<td>Geology and genesis of the contrasting Wafi-Golpu porphyry-epithermal deposit, Papua New Guinea</td>
<td>Newcrest Mining, Harmony Gold, Morobe Mining Joint Venture, UTAS</td>
</tr>
<tr>
<td>Lina Serrano (UPadova)^</td>
<td>V.Kamenetsky, McPhie</td>
<td>The magmatic province of Patagonia and sills from Mauritania and Mali: Examples of silicic and basaltic large igneous provinces</td>
<td>University of Padova</td>
</tr>
<tr>
<td>Subira Sharma</td>
<td>G.Davidson, Cooke</td>
<td>Evaluation of links between Merlin-style Mo-Re mineralisation and magmatism in the Cloncurry fold belt, Queensland: Implications for exploration</td>
<td>UTAS, Inova Resources</td>
</tr>
<tr>
<td>Jeff Steadman*</td>
<td>Large, Bull, G.Davidson</td>
<td>BIFs, black shales, and gold deposits: A re-evaluation</td>
<td>CoE, CSIRO, Integra Mining</td>
</tr>
<tr>
<td>Nathan Steeves</td>
<td>Gemmell, Large, Hannington (Uottawa)</td>
<td>Ore genesis of the Greens Creek VHMS Deposit, Alaska: Implications for mining, milling and exploration</td>
<td>Hecla Mining, UTAS</td>
</tr>
<tr>
<td>Francisco Testa</td>
<td>Cooke, Baker</td>
<td>Tourmaline breccia pipes: San Francisco de los Andes, Argentina and Rio Blanco-Los Bronces, Chile</td>
<td>UTAS, AMIRA P1060</td>
</tr>
<tr>
<td>Irma Vejelyte</td>
<td>V.Kamenetsky, McPhie, Ehrig (BHPBilliton)</td>
<td>Mafic magmatism in the Gawler Craton: Distribution, composition, timing, sources and tectonic setting</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Daniele Vergani</td>
<td>McPhie, Carey</td>
<td>The 2007 explosive activity at Piton de la Fournaise volcano (Reunion): Constraints on the eruptive processes by the volcanological study of the erupted deposits</td>
<td>UTAS, CoE</td>
</tr>
<tr>
<td>Selina Wu^</td>
<td>Gemmell, Large</td>
<td>Volcanic hosted massive sulfide deposits of the Que-Hellyer Volcanics, western Tasmania</td>
<td>Bass Metals</td>
</tr>
</tbody>
</table>

*Degree completed, not yet graduated. ^Graduated. §Withdrawn/terminated.
White Island, New Zealand
MAJOR EXTERNALLY FUNDED RESEARCH PROJECTS*

AMIRA PROJECTS 2014

<table>
<thead>
<tr>
<th>Investigators</th>
<th>Project</th>
<th>Industry Partners</th>
<th>Period</th>
<th>AMIRA Funding for 2014</th>
<th>Misc Funding for 2014</th>
<th>Additional Funding for 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooke, Gemmell, Baker, White, Fox, Zhang, Thompson, Lounejeva, Chen (Guangzhou), Hollings (Lakehead), J.Wilkinson (Imperial), C.Wilkinson (Imperial)</td>
<td>AMIRA P1060. Enhanced geochemical targeting in magmatic-hydrothermal systems</td>
<td>Anglo American Exploration Australia, AngloGold Ashanti Australia, Barrick (Australia Pacific), BHP Billiton Marketing Asia, Codelco, Compania de Minas Buenaventura, Eldorado Gold, First Quantum Minerals, Freeport McMoRan Australasia, Gold Fields, G-Resources, Inmet Mining, Intrepid Mines, Lundin Mining, MMG Australia, Newcrest Mining, Newmont USA, Rio Tinto Exploration, Teck Resources, Vale Exploration, Xstrata Copper</td>
<td>2011–2014</td>
<td>$484,000</td>
<td>$53,499</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

ARC DISCOVERY GRANTS 2014

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Project</th>
<th>Period</th>
<th>ARC Funding for 2014</th>
<th>Misc Funding for 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carey</td>
<td>Submarine volcanoes: Degassing of silicic magma with implications for ascent and eruption processes</td>
<td>2011–2014</td>
<td>**</td>
<td>$0</td>
</tr>
</tbody>
</table>

INDUSTRY AND OTHER EXTERNALLY FUNDED RESEARCH GRANTS 2014

<table>
<thead>
<tr>
<th>Investigators</th>
<th>Project</th>
<th>Funding Body</th>
<th>Period</th>
<th>Funding for 2014</th>
<th>Misc Funding for 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooke, Jansen, Selley, Harris (Newcrest)</td>
<td>Exploring the porphyry environment</td>
<td>Newcrest Mining</td>
<td>July 2009 – 2016</td>
<td>$359,365</td>
<td>$0</td>
</tr>
<tr>
<td>Large, Danyushevsky</td>
<td>Research and development in mineral deportment and exploration</td>
<td>Newcrest Mining</td>
<td>2012–2016</td>
<td>$235,000</td>
<td>$0</td>
</tr>
<tr>
<td>Orth</td>
<td>Paleoprotrozoic mafic magmatism of the Kimberley Basin, Western Australia</td>
<td>Geological Survey of Western Australia</td>
<td>2014–2015</td>
<td>$212,948</td>
<td>$0</td>
</tr>
<tr>
<td>Orth</td>
<td>Carson Volcanics-Hart Dolerite Large Igneous Province project</td>
<td>Geological Survey of Western Australia</td>
<td>2012–2014</td>
<td>$81,475</td>
<td>$0</td>
</tr>
<tr>
<td>Scott, Heathcote (student)</td>
<td>Gold distribution and association at the Kansanshi copper-gold deposit Zambia</td>
<td>Kansanshi Mining</td>
<td>2014–2017</td>
<td>$78,000</td>
<td>$0</td>
</tr>
<tr>
<td>Large, Meffre, Gregory</td>
<td>South Australia pyrite, hematite and magnetite fingerprint database</td>
<td>Geological Survey of South Australia</td>
<td>2012–2015</td>
<td>$66,000</td>
<td>$0</td>
</tr>
<tr>
<td>Investigators</td>
<td>Project</td>
<td>Funding Body</td>
<td>Period</td>
<td>Funding for 2014</td>
<td>Misc Funding for 2014</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Hunt</td>
<td>Sensor based sorting technologies for waste dumps and stockpiles associated with bulk mining</td>
<td>CSIRO</td>
<td>2014</td>
<td>$60,981</td>
<td>$0</td>
</tr>
<tr>
<td>Gemmell, Beas (student)</td>
<td>Petrography and mineragraphy of volcanic rocks and age dating of La Zanja Mine, Peru</td>
<td>Minera La Zanja</td>
<td>2014</td>
<td>$53,735</td>
<td>$0</td>
</tr>
<tr>
<td>Khin Zaw, Salam, Large, Burrett, Lai, Khositantanont (DMR Thailand), Tran (Hanoi), Rosana (Padjadjaran), Subandrio (ITB, Bandung), Crow (ex BGS, London), Azman (Uni Malaya, Kuala Lumpur), Sanematsu (ASIT, Japan)</td>
<td>Ore Deposits of SE Asia (extension)</td>
<td>Indochina Resources Ltd, Issara Mining, MMG, Monument Mining, Besra, Phu Bia Mining, PT Antam, Tigers Realm Minerals, Anglo American Exploration, Newcrest Mining</td>
<td>2011–2014</td>
<td>$50,000</td>
<td>$5,400</td>
</tr>
<tr>
<td>Halpin</td>
<td>Metamorphic architecture of the central-northern Gawler Craton</td>
<td>Geological Survey of South Australia</td>
<td>2015^</td>
<td>$50,000</td>
<td>$0</td>
</tr>
<tr>
<td>Reading, Bombardieri</td>
<td>A geophysical investigation of western Tasmania</td>
<td>Mineral Resources Tasmania</td>
<td>2012–2014</td>
<td>$49,476</td>
<td>$0</td>
</tr>
<tr>
<td>Cooke, Hunt, Berry, Escolme (student)</td>
<td>Ore characterisation and geometallurgical modelling at the Productora Cu-Au-Mo deposit, Chile</td>
<td>Hot Chili, CSIRO, AusIMM</td>
<td>2013–2016</td>
<td>$38,786</td>
<td>$0</td>
</tr>
<tr>
<td>Gemmell, Steeves (student)</td>
<td>Ore genesis of the Greens Creek VHMS Deposit, Alaska: Implications for mining, milling and exploration</td>
<td>Hecla Mining Company</td>
<td>2013–2016</td>
<td>$47,000</td>
<td>$0</td>
</tr>
<tr>
<td>Danyushevsky</td>
<td>LAM data reduction software development</td>
<td>Rio Tinto</td>
<td>2014–2016</td>
<td>$45,000</td>
<td>$0</td>
</tr>
<tr>
<td>Large, G.Davidson, Meffre, Belousov</td>
<td>Development and application of a Yilgarn pyrite and magnetite fingerprint database</td>
<td>Geological Survey of Western Australia</td>
<td>2012–2015</td>
<td>$44,000</td>
<td>$0</td>
</tr>
<tr>
<td>G.Davidson, Cooke, Sharma (student)</td>
<td>Evaluation of links between Merlin-style Mo-Re mineralisation and magmatism in the Cloncurry fold belt, Queensland: Implications for exploration</td>
<td>Inova Resources, Society of Economic Geologists</td>
<td>2013–2016</td>
<td>$25,000</td>
<td>$0</td>
</tr>
<tr>
<td>LI (visitor)</td>
<td>Zircon U-Pb dating for granite and trace element compositions of sulfides from the deposits on the northern and southern margins of the North China Craton: Implications for orogenic belt evolution and mineralisation</td>
<td>China Scholarship Council/ Peking University</td>
<td>2013–2014</td>
<td>$21,580</td>
<td>$0</td>
</tr>
<tr>
<td>Qing (visitor)</td>
<td>The origin of concealed gold and polymetallic orebodies in Southern China</td>
<td>China Scholarship Council/ China Gold Resources</td>
<td>2013–2014</td>
<td>$20,000</td>
<td>$0</td>
</tr>
<tr>
<td>Large, Gregory, Steadman, Wu</td>
<td>Peak Gold project</td>
<td>Drummond Gold</td>
<td>2014–2015</td>
<td>$18,985</td>
<td>$0</td>
</tr>
<tr>
<td>Large, Meffre, McGoldrick, Johnson (student)</td>
<td>Trace elements in metalliferous black shales</td>
<td>ANZIC-IODP</td>
<td>2014</td>
<td>$17,250</td>
<td>$0</td>
</tr>
<tr>
<td>Cas (Monash), McPhie, Baker (student)</td>
<td>Lithostratigraphy, facies architecture, alteration and geochemistry of the footwall to the DeGrussa volcanic hosted massive sulfide deposit</td>
<td>Sandfire Resources</td>
<td>2014–2015</td>
<td>$12,000</td>
<td>$0</td>
</tr>
</tbody>
</table>

*Projects with greater than $2,000 external funding per year. **All project funding received, project still active.
^Project funding received before commencement. ‡‡Full project funding received in one year.
<table>
<thead>
<tr>
<th>Investigators</th>
<th>Project</th>
<th>Funding Body</th>
<th>Period</th>
<th>Funding for 2014</th>
<th>Misc Funding for 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roach, Reading, Duffett (MRT), Yu (student)</td>
<td>A geophysical investigation of the Mt Lindsay Area, western Tasmania</td>
<td>Mineral Resources Tasmania</td>
<td>2014</td>
<td>$10,000</td>
<td>$0</td>
</tr>
<tr>
<td>G.Davidson, Haycroft (student)</td>
<td>The eastern mineralisation, Broken Hill, NSW</td>
<td>CBH Resources</td>
<td>2014–2015</td>
<td>$10,000</td>
<td>$0</td>
</tr>
<tr>
<td>Roach, Duffett (MRT), McAdam (student)</td>
<td>Geophysical investigation of the Mole Creek area, Tasmania</td>
<td>Mineral Resources Tasmania</td>
<td>2014–2015</td>
<td>$10,000</td>
<td>$0</td>
</tr>
<tr>
<td>Parbhakar-Fox, G.Davidson, Danyushevsky, Jackson (student)</td>
<td>Geochemical and mineralogical characterisation of tailings: Evaluating the effect of the Northern Pond on the Old Tailings Dam, Savage River Mine, Tasmania</td>
<td>DPIPWE</td>
<td>2014</td>
<td>$8,000</td>
<td>$0</td>
</tr>
<tr>
<td>Cooke, Zhang, Chen (student)</td>
<td>The geology, mineralisation, alteration and fluid evolution of Zijinshan ore field, Fujian Province, China</td>
<td>Society of Economic Geologists</td>
<td>2014</td>
<td>$6,388</td>
<td>$0</td>
</tr>
<tr>
<td>Sanematsu (visitor)</td>
<td>Granite geochemistry and related REE deposits in Southeast Asia</td>
<td>Japan Society for the Promotion of Science</td>
<td>2013–2015</td>
<td>$5,000</td>
<td>$0</td>
</tr>
<tr>
<td>Roach, Reading, Harvey (student)</td>
<td>Geophysical interpretation of the Eastern Surat Basin Basement</td>
<td>QGC</td>
<td>2014–2015</td>
<td>$5,000</td>
<td>$0</td>
</tr>
<tr>
<td>Cooke, Berry, Scott, Piquer (student)</td>
<td>Structural geology of the Andes of Central Chile: Evolution, controls on magmatism and the emplacement of giant ore deposits and implications for exploration</td>
<td>Society of Economic Geologists</td>
<td>2014</td>
<td>$2,355</td>
<td>$0</td>
</tr>
<tr>
<td>Cooke, Selley, Sykora (student)</td>
<td>The geological, structural, geochemical and genetic significance of anhydrite veins and cemented breccias at the Lihir gold deposit, Papua New Guinea</td>
<td>Society of Economic Geologists</td>
<td>2014</td>
<td>$2,089</td>
<td>$0</td>
</tr>
<tr>
<td>Cooke, Faustino (student)</td>
<td>Plio-pleistocene intrusive history and ore paragenesis of Bayugo porphyry Cu-Au deposit Surigao Del Norte, Philippines</td>
<td>DFAT</td>
<td>2014–2015</td>
<td>$2,000</td>
<td>$0</td>
</tr>
<tr>
<td>McPhie, V.Kamenetsky, M.Kamenetsky</td>
<td>Setting, age and architecture of the Olympic Dam Au-Cu-U deposit, SA</td>
<td>BHP Billiton Olympic Dam Corp</td>
<td>July 2010–2014</td>
<td>**</td>
<td>$0</td>
</tr>
<tr>
<td>McNeill, Feig, Falloon, D.H.Green</td>
<td>Sulfur and metal evolution in parental mid ocean ridge basalt magmas</td>
<td>IODP (via Australian National University)</td>
<td>2012–2015</td>
<td>**</td>
<td>$0</td>
</tr>
<tr>
<td>V.Kamenetsky, McPhie, Apukhtina (student)</td>
<td>Stable isotopes (C, S and O) and halogens (Cl, F) in gangue and ore minerals at Olympic Dam: Evaluation of mantle and crustal contributions to mineralisation</td>
<td>BHP Billiton Olympic Dam Corp</td>
<td>2012–2015</td>
<td>**</td>
<td>$0</td>
</tr>
</tbody>
</table>

*Projects with greater than $2,000 external funding per year. **All project funding received, project still active. ^Project funding received before commencement. ‡‡Full project funding received in one year.
VISITORS TO CODES 2014

INDUSTRY VISITORS

<table>
<thead>
<tr>
<th>NAME</th>
<th>COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Agnew</td>
<td>Rio Tinto</td>
</tr>
<tr>
<td>Debora Araujo</td>
<td>Rio Tinto</td>
</tr>
<tr>
<td>Timothy Baker</td>
<td>Eldorado Gold</td>
</tr>
<tr>
<td>Tim Bauer</td>
<td>Eldorado Gold</td>
</tr>
<tr>
<td>Tim Chalke</td>
<td>Mira Geoscience</td>
</tr>
<tr>
<td>Bill Close</td>
<td>Consultant</td>
</tr>
<tr>
<td>Paul Cromie</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Iain Dalrymple</td>
<td>Teck Resources</td>
</tr>
<tr>
<td>Mary Doherty</td>
<td>Newmont</td>
</tr>
<tr>
<td>Kathy Ehrig</td>
<td>BHP Billiton</td>
</tr>
<tr>
<td>David First</td>
<td>Freepor MoMoRan Australasia</td>
</tr>
<tr>
<td>Fred Fryer</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>Will Goodall</td>
<td>MinAssist</td>
</tr>
<tr>
<td>Anthony Harris</td>
<td>Newcrest Mining</td>
</tr>
<tr>
<td>Mary Harris</td>
<td>Rio Tinto</td>
</tr>
<tr>
<td>Paul Hilliard</td>
<td>Sandfire</td>
</tr>
<tr>
<td>John Holliday</td>
<td>Newcrest Mining</td>
</tr>
<tr>
<td>Tim Ireland</td>
<td>First Quantum</td>
</tr>
<tr>
<td>Alan Kobussen</td>
<td>Rio Tinto</td>
</tr>
<tr>
<td>John Landmark</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Toshiaki Matsuda</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>Brian Minty</td>
<td>Minty Geophysics</td>
</tr>
<tr>
<td>Colin Moorhead</td>
<td>Newcrest Mining</td>
</tr>
<tr>
<td>Robert Moye</td>
<td>Consultant</td>
</tr>
<tr>
<td>David Murphy</td>
<td>AngloGold Ashanti</td>
</tr>
<tr>
<td>Javier Ortuzar</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Heidi Pass</td>
<td>Consultant</td>
</tr>
<tr>
<td>Paul Polito</td>
<td>Anglo American</td>
</tr>
<tr>
<td>Lynn Pryer</td>
<td>FrOGTECH</td>
</tr>
<tr>
<td>Adele Seymon</td>
<td>AMIRA International</td>
</tr>
<tr>
<td>Trevor Shaw</td>
<td>Glencore</td>
</tr>
<tr>
<td>Michiel van Dongen</td>
<td>MMG</td>
</tr>
<tr>
<td>Peter Walker</td>
<td>Vale</td>
</tr>
<tr>
<td>Mike Whitbread</td>
<td>MMG</td>
</tr>
<tr>
<td>Noel White</td>
<td>Consultant</td>
</tr>
<tr>
<td>Tom Woolrych</td>
<td>Blackthorn Resources</td>
</tr>
</tbody>
</table>

NATIONAL ACADEMIC AND GOVERNMENT VISITORS

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Adam</td>
<td>Macquarie University</td>
</tr>
<tr>
<td>Steve Barnes</td>
<td>CSIRO</td>
</tr>
<tr>
<td>Edwin Bonilla</td>
<td>NICTA</td>
</tr>
<tr>
<td>Ray Cas</td>
<td>Monash University</td>
</tr>
<tr>
<td>Ross Cayley</td>
<td>Geoscience Victoria</td>
</tr>
<tr>
<td>Cristina Ciobanu</td>
<td>University of Adelaide</td>
</tr>
<tr>
<td>Peter Coghill</td>
<td>CSIRO</td>
</tr>
<tr>
<td>Nigel Cook</td>
<td>University of Adelaide</td>
</tr>
<tr>
<td>Patrice de Caritat</td>
<td>Geoscience Victoria</td>
</tr>
<tr>
<td>Mark Duffett</td>
<td>Mineral Resources Tasmania</td>
</tr>
<tr>
<td>Ashleigh Hood</td>
<td>University of Melbourne</td>
</tr>
<tr>
<td>Alison Hughes</td>
<td>EPA Division</td>
</tr>
<tr>
<td>Dave Huston</td>
<td>Geoscience Australia</td>
</tr>
<tr>
<td>Terry Mernagh</td>
<td>Australian National University</td>
</tr>
<tr>
<td>David Moore</td>
<td>Monash University</td>
</tr>
<tr>
<td>Gerrit Olivier</td>
<td>Institute of Mine Seismology</td>
</tr>
<tr>
<td>Simone Pilia</td>
<td>Australian National University</td>
</tr>
<tr>
<td>Carl Spandler</td>
<td>James Cook University</td>
</tr>
<tr>
<td>Daniel Steinberg</td>
<td>NICTA</td>
</tr>
<tr>
<td>Steve Walters</td>
<td>CRC ORE</td>
</tr>
</tbody>
</table>
INTERNATIONAL ACADEMIC AND GOVERNMENT VISITORS

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexey Ariskin</td>
<td>Moscow State University, Russia</td>
</tr>
<tr>
<td>Sandeep Chandola</td>
<td>Society of Exploration Geophysicists, Malaysia</td>
</tr>
<tr>
<td>Huayong Chen</td>
<td>Guangzhou Institute of Geochemistry, China</td>
</tr>
<tr>
<td>Sofia Chistyakova</td>
<td>University of the Witwatersrand, South Africa</td>
</tr>
<tr>
<td>Rosario Esposito</td>
<td>Naples University, Italy</td>
</tr>
<tr>
<td>Fred Fryer</td>
<td>Massachusetts Institute of Technology, USA</td>
</tr>
<tr>
<td>Yoshihiko Goto</td>
<td>Muroran Institute of Technology, Japan</td>
</tr>
<tr>
<td>Dave Hale</td>
<td>Colorado School of Mines, USA</td>
</tr>
<tr>
<td>Koichi Hayashi</td>
<td>Geometrics, USA</td>
</tr>
<tr>
<td>Brian Hoal</td>
<td>Society of Economic Geologists, USA</td>
</tr>
<tr>
<td>Peter Hollings</td>
<td>Lakehead University, Canada</td>
</tr>
<tr>
<td>Marion Jean</td>
<td>Leibniz Universitat, Germany</td>
</tr>
<tr>
<td>Rais Latypov</td>
<td>University of the Witwatersrand, South Africa</td>
</tr>
<tr>
<td>Yubang Li</td>
<td>State Key Laboratory of Ore Deposit Geochemistry, China</td>
</tr>
<tr>
<td>Jim Mortensen</td>
<td>University of British Columbia, Canada</td>
</tr>
<tr>
<td>Kyoaki Niida</td>
<td>University of Hokkaido, Japan</td>
</tr>
<tr>
<td>Michael Perfit</td>
<td>University of Florida, USA</td>
</tr>
<tr>
<td>Terry Plank</td>
<td>Columbia University, USA</td>
</tr>
<tr>
<td>Eugenii Pushkarev</td>
<td>Institute of Geology and Geochemistry, Russia</td>
</tr>
<tr>
<td>Peter Sorjonen-Ward</td>
<td>Geological Survey of Finland</td>
</tr>
<tr>
<td>Yuri Taran</td>
<td>UNAM, Mexico</td>
</tr>
<tr>
<td>Jamie Wilkinson</td>
<td>Imperial College London, UK</td>
</tr>
</tbody>
</table>

Visitors to CODES during the year, from the top: Alexey Ariskin (Moscow State University) Fred Fryer (Agilent Technologies), Yoshihiko Goto (Muroran Institute of Technology)