UTAS Home › › Faculty of Science, Engineering & Technology › Research › Chemistry › Advanced Chemistry Underpinning Materials for Everyday Life and Product Innovations
| UTAS Collaborators | School of Chemistry |
|---|---|
| Funding Source | Links to ARC Discovery Projects DP120101540, DP120101937, DP110102046 and ARC Future Fellowships FT100100609 and FT0990521 |
| Project Status | Current |
A range of projects involving various staff in the School of Chemistry are active or offered that are aimed at developing new materials, new uses for and more sustainable, or improved, routes to existing materials. For instance new polymers, fuels, pharmaceuticals and derivatives of carbon dioxide are targeted as important challenges facing society. Activities range from fundamental studies of the chemistry underpinning these technologies, including computer based modelling of reactions, to applied chemistry whereby new industrial manufacturing processes are the ultimate aim.
Almost all consumer and industrial products are made via chemical processes, for example plastics, fuels, detergents and medicines. One of the major challenges facing chemistry nowadays is the need for more sustainable production methods for this plethora of materials. We carry out research in the area of synthetic chemistry aimed at addressing these challenges.
Our emphasis in the development of new synthetic methods is focussed on discovering more environmentally acceptable and efficient protocols, or inventing new synthetic transformations that have not previously been possible. A major theme is in the field of catalysis, which can be defined in a general sense as the science of making chemical reactions proceed more easily and with less environmental impact. In the laboratory we develop new catalyst technologies or study the fundamental science of model catalysts. Catalytic processes are also modelled computationally and the results used to drive further experimental development. Advanced materials are also a focus including the synthesis and application of nanoparticles and nanocomposite materials and exploring new applications for carbonaceous materials such as diamond and graphene.

Examples of take-for-granted aspects of modern lifestyle where new materials are making an impact, along with some chemical details that underlie these products.
For further detail of research projects in this broad area of application, please refer to the research pages of the staff listed below on the School of Chemistry web site, http://www.utas.edu.au/chemistry/
Olefin Oligomerization via Metallacycles: Dimerization, Trimerization, Tetramerization, and Beyond, McGuinness, D. S. Chem. Rev. 2011, 111, 2321.
High acitivity acetylene polymerisation with a bis(imino)pyridine iron(II) catalyst, Karpiniec, S. S.; McGuinness, D. S.; Britovsek, G. J. P.; Wierenga, T. S.; Patel, J. Chem. Commun. 2011, 47, 6945.
Platinum-oxazoline complexes as anti-cancer agents: syntheses, characterisation and initial biological studies, Yadav, P.N.; Beveridge, R. E.; Blay, J.; Boyd, A. R.; Chojnacka, M. W.; Decken, A.; Deshpande, A. A.; Gardiner, M. G.; Hambley, T. W.; Hughes, M. J.; Jolly, L.; Lavangie, J. A.; MacInnis, T. D.; McFarland, S. A.; New, E. J.; Gossage, R. A. MedChemComm 2011, 2, 274.
Tuning the Laplaza-Cummins 3-coordinate M[N(R)Ph]3 catalyst to activate and cleave CO2, Brookes, N. J.; Ariafard, A.; Stranger, R.; Yates, B. F. Dalton Trans. 2011, 40, 5569.
Theoretical Investigation into the Mechanism of Reductive Elimination from Bimetallic Palladium Complexes, Ariafard, A.; Hyland, C. J. T.; Canty, A. J.; Sharma, M.; Yates, B. F. Inorg. Chem. 2011, 50, 6449.
Pellicular particles with spherical carbon cores and porous nanodiamond/polymer shells for reversed-phase HPLC, Wiest, L.A.; Jensen, D.S.; Hung, C.H.; Olsen, R.E.; Davis, R.C.; Vail, M.A.; Dadson, A.E.; Nesterenko, P.N.; Linford, M.R.; Anal. Chem. 2011, 83, 5488.
Chemselective Reduction of 2-Acyl-N-sulfonylpyrroles, You, H. T.; Grosse, A. G.; Howard, J. K.; Hyland, J. T. H.; Just, J.; Molesworth; P. P.; Smith, J. A.; Yates, B.F. Org. & Biomol. Chem. 2011, 9, 3948.
Reduction of a chelating bis(NHC)Pd(II) complex to [{m-bis(NHC)}2Pd2H]+: A terminal hydride in a binuclear Pd(I) species formed under catalytically relevant conditions, Boyd, P. D. W.; Edwards, A. J.; Gardiner, M. G.; Ho, C. C.; Lemée-Cailleau, M.-H.; McGuinness, D. S.; Riapanitra, A.; Steed, J. W.; Stringer D. N.; Yates, B. F. Angew. Chem. Int. Ed. 2010, 49, 6315.
Sm(II) reduction chemistry of heteroalkynes: Stable adducts, reductive coupling, reductive C-C/C-N bond cleavage and secondary trapping of the tert-butyl radical with bulky nitriles, phosphaalkynes and isonitriles, Gardiner, M. G.; James, A. N.; Jones, R. C.; Schulten, C. Dalton Trans., 2010, 39, 6864.
A new mechanistic pathway under Sonogashira reaction protocol involving multiple acetylene insertions, Jones, R. C.; Canty, A. J.; Caradoc-Davies, T.; Davies, N. W.; Gardiner, M. G.; Marriott, P. J.; Rühle, C. P. G.; Tolhurst, V.-A. Dalton Trans. 2010, 39, 3799.
First X-ray structure of a N-naphthaloyl-tethered chiral dirhodium(II) complex: Structural basis for tether substitution improving asymmetric control in olefin cyclopropanation, Ghanem, A.; Gardiner, M. G.; Williamson, R. M.; Müller, P. Chem.- Eur. J. 2010, 16, 3291.
Factors Dictating Carbene Formation at (PNP)Ir, Brookes, N. J.; Whited, M. T.; Ariafard, A.; Stranger, R.; Grubbs, R. H.; Yates, B. F. Organometallics 2010, 29, 4239.
Gold-Catalyzed Rearrangement of Cyclopropenylmethylacetates to Z-Acetoxydienes, Seraya, E.; Slack, E.; Ariafard. A.; Yates, B. F.; Hyland, C. J. T. Org. Lett. 2010, 12, 4768.
Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes, Henderson, R.D.; Guijt, R.M.; Haddad, P.R.; Hilder, E.F.; Lewis, T.W.; Breadmore, M.C.; Lab Chip, 2010, 10, 1869.
Photolithographic patterning of conducting polyaniline films via flash welding, Henderson, R.D.; Breadmore, M.C.; Dennany, L.; Guijt, R.M.; Haddad, P.R.; Hilder, E.F.; Innis, P.C.; Lewis, T.W.; Wallace, G.G.; Synthetic Metals, 2010, 160, 1405.
Spiropyran modified micro-fluidic chip channels as photonically controlled self-indicating system for metal ion accumulation and release, Benito-Lopez, F.; Scarmagnani, S.; Walsh, Z.; Paull, B.; Macka, M.; Diamond, D.; Sensor Actuat B, 2010, 140, 295.
High capacity gold nanoparticle functionalised polymer monoliths, Connolly, D.; Twamley, B.; Paull, B.; Chem. Commun.; 2010, 46, 2109.
Binuclear intermediates in oxidation reactions: [(Me3SiC≡C)Me2(bipy)Pt-PtMe2(bipy)]+ in the oxidation of PtIIMe2(bipy) (bipy=2,2'-bipyridine) by IPh(C≡CSiMe3)(OTf) (OTf = triflate), Canty, A. J.; Gardiner, M. G.; Jones, R. C.; Rodemann, T.; Sharma, M. J. Am. Chem. Soc. 2009, 131, 7236.
A mechanistic study on the oxidation of hydrazides: Application to the tuberculosis drug isoniazid, Amos, R. I. J.; Gourlay, B. S.; Schiesser, C. H.; Smith, J. A.; Yates, B.F. Chem. Commun 2008, 1695.
Members (External)
Prof Allan Canty: Allan.Canty@utas.edu.au
Dr Michael Gardiner: Michael.Gardiner@utas.edu.au
Prof Emily Hilder: Emily.Hilder@utas.edu.au
Dr Chris Hyland: Chris.Hyland@utas.edu.au
Dr Trevor Lewis: Trevor.Lewis@utas.edu.au
Dr David McGuinness: David.McGuinness@utas.edu.au
Prof Pavel Nesterenko: Pavel.Nesterenko@utas.edu.au
Prof Brett Paull: Brett.Paull@utas.edu.au
Dr Jason Smith: Jason.Smith@utas.edu.au
Prof Brian Yates: Brian.Yates@utas.edu.au
Authorised by the Dean, Faculty of Science, Engineering & Technology
15 May, 2012
Future Students | International Students | Postgraduate Students | Current Students
© University of Tasmania, Australia ABN 30 764 374 782 CRICOS Provider Code 00586B
Copyright | Privacy | Disclaimer | Web Accessibility | Site Feedback | Info line 1300 363 864