UTAS Home › School of Engineering › Community Engagement Through STEM Education › About › Strategic Role of STEM Education

On July 31 2013, Chief Scientist Professor Ian Chubb released the position paper: “Science, Technology, Engineering and Mathematics (STEM) in the National Interest: A Strategic Approach”.
The paper presents an approach for a national strategy to guide Australia’s STEM enterprise and was released in an address to the National Press Club.
The School of Engineering at The University of Tasmania welcomes the release of this paper.

The Australian Workforce and Productivity Agency released on 09 July 2013 their Information and Communications Technology (ICT) workforce study. A key idea included in the study that connects with STEM is quoted below:
“The Australian Council of Deans of ICT (ACDICT) has called for ICT to be given greater recognition as an integral part of STEM, highlighting ‘the enabling and central role of ICT throughout STEM disciplines’. ACDICT has called for the Enhancing the Training of Mathematics and Science Teachers Program to be extended to include improving the skills of teachers of ICT. According to ACDICT’s President, Professor Leon Sterling: Government should address the issue holistically and consider alternatives to improve the teaching of ICT in secondary schools by providing adequate funding, as ICT is vital for the future well-being in Australia. Doing it for maths and science is only addressing part of the solution.”

The Australian Council of Learned Academies (ACOLA) launched on 05 June 2013 a new report titled “STEM: Country Comparisons. International Comparisons of Science, Technology, Engineering and Mathematics (STEM) Education”. The report compares STEM education strategies on an international basis and identifies the key strategies of successful STEM countries.
From 22 studies of STEM policies and practices around the world the report makes 24 key findings which highlight a number of challenges for Australia with STEM participation and provides a basis of ideas to tackle these.
Overall, the report found that while Australia does well in the major international ranking studies, it faces several key challenges if it is to maintain or improve upon its current position.
Report co-author Professor Russell Tytler said “STEM education is almost universally recognised as important. A key problem for Australia lies in in the distribution of student achievement with a long tail of underperforming students when compared to our major competitors.”
The report also found that Australia is suffering serious capacity gaps in STEM teaching with teacher shortages, in particular in regional Australia, and a large problem of teachers teaching out of field, which is particularly pronounced in mathematics.
The President of ACOLA, Professor Lesley Johnson AM FAHA commented “Of particular interest in the Report are the striking similarities found in countries strong in STEM, despite significant cultural, political and economic differences”. She went on to add “For example, STEM strong countries have a strong focus on teachers and teaching, with teachers held in high esteem and expected to teach in their qualified field and not others.”
STEM strong countries were all found to share a focus on curriculum reform to make STEM engaging; a strong commitment to learning and achievement for all; guided by a national STEM policy framework. STEM education has long been seen as pivotal to increasing our nation’s productivity. The report found that many nations have evolved dynamic and productive strategies in their focus on advancing STEM.
“Australia lacks a sense of national urgency around STEM performance in contrast to some of our closest competitors. This report provides a framework of evidence based findings on which to address the challenges facing STEM education in Australia” commented Professor Tytler.

The Australian Industry Group released on 21 March 2013 the report “Lifting our Science, Technology, Engineering and Maths (STEM) skills (PDF, 1.1MB)”. Some of the report recommendations in the schooling sector are:
Given the importance of the early experience of STEM skills for young people, it is imperative to support a range of strategies in the schooling sectors that lead to increase participation by students in STEM skills. These strategies include:

The Office of the Chief Scientist released on 14 February 2013 the paper titled "Top Breakthrough Actions for Innovation" (PDF, 164KB). The paper identifies five breakthrough actions governments could take to make Australia a more innovative nation. Some key statements that are part of this paper include:
The Commonwealth should require every Australian STEM degree course to provide an opportunity for a substantial number of students to undertake a business placement or project for university credit to the value of one full-time semester. These could be either domestic or international placements.
For example, it is already an institutional accreditation requirement of Engineers Australia that all engineering degrees include a 12-week ‘Exposure to Engineering Professional Practice’ component. This is an important start; but to change the culture, we have to change the scale of these initiatives across the broad range of STEM subjects.

The Australian Workforce and Productivity Agency (AWPA) prepares an annual report about the demand for skills from the resources sector and the supply of skills available to meet those needs and options to address skill shortages. AWPA has released in December 2012 its second annual report on the resources sector skill needs. A key consideration which is part of the report and that refers to STEM education and training opportunities in the K-12 and VET sectors follows:
“Policy makers could explore the relationship between the responsiveness of the tertiary and the VET sector and participation in mathematics and science subjects in the secondary and primary school systems. There is a need to increase education and training opportunities through schooling, higher education and VET in STEM to better address the resources sector skill needs.”

The Australian Workforce and Productivity Agency released in September 2012 the report "Building Australia's Defence Supply Capabilities: Main Report for the Defence Industry Workforce Strategy". STEM skills and subjects are mentioned several times in the report. In particular, some key statements that are part of this document include:
"Across Defence industry, the greatest demand for skills relates to highly technical occupations in the engineering professions and trades. The supply of engineers, particularly engineering professionals, is dependent on students continuing with high-level science, technology, mathematics and science (STEM) subjects in upper secondary school.
Therefore, strategies are required to increase the numbers of young people engaged in the STEM subjects that lead to critical occupations for Defence industry."
Importantly, one of the recommendations in the report talks specifically about encouraging STEM study in schools:
"To avoid duplication of effort, Defence liaise with The Office of the Chief Scientist to assess the programs currently being offered to encourage STEM study in schools. This assessment needs to identify the region in which the programs are being run, the target population, the skills being targeted and developed, the industry/education partnership arrangements, and the evidence available to determine the impact of the program on students’ choices for future study and careers.
If this data collection process identifies the need for new programs, communication and marketing campaigns should be developed between the DMO and industry associations to demonstrate the value of careers in Defence industry to schoolchildren and their parents, as well as the broader community."

The Office of the Chief Scientist released on 05 September 2012 the paper titled "STEM Education and the Workplace". This paper examines Science, Technology, Engineering and Mathematics (STEM) skills, employer demand for graduates in STEM, and how Australian universities can best prepare STEM graduates to take up roles in the wider economy, as well as in academic research.
In particular, some key statements that are part of this paper include:
“At a time when economic success will increasingly depend on the creation and application of knowledge, STEM education instils graduates with valuable skills in rigorous evidence-based thinking and problem solving…”
“It is timely for all participants in STEM education to consider how best to prepare and employ students, both for traditional roles in research and science-intensive industries, and for professions that require less scientific knowledge but where STEM skills still provide value…”
“STEM skills include problem solving, rigorous and sceptical analysis of evidence and theories, numeracy, and the development of logical arguments. The investigative nature of STEM fields also makes them ideal training grounds for developing objective and critical ways of thinking…”
“As technology transforms much of the economy, from manufacturing and retail to law and banking, STEM graduates will continue to be in demand in a range of sectors…”
“Students interested in pursuing STEM degrees should not be deterred by a false perception that a research career will be their only option. There are avenues at all stages of the student cycle to signal the possibilities that STEM capabilities unlock. As part of recruitment efforts for prospective students, and careers services for current students, universities can highlight the applicability of STEM skills to a wide range of professions and sectors…”

The Australian Workforce and Productivity Agency released on 19 July 2012 the discussion paper "Future focus: Australia’s skills and workforce development needs (PDF, 8.05MB)". STEM subjects are mentioned several times in the paper.
In particular, some key questions and statements that are part of this document include:
"Does more need to be done to foster STEM (Science, Technology, Engineering and Mathematics) subjects for Australia’s future competitiveness in the global marketplace?..."
"Will our capacity in the STEM subjects be sufficient for the science and technology needs of the future?..."
"Investment in education is critical as Australia tries to revive science, technology, engineering and mathematics (STEM) education to aid the high‐tech sector..."
"The prominent role of science and technology means that Australia continues to require considerable numbers of highly‐qualified people, especially in STEM subjects..."
"There is evidence we are slipping in terms of STEM subjects compared to our international competitors. This is undermining the ability of students to succeed in disciplines such as engineering. Current government policies to support STEM subjects in schools will take a long time to work through to tertiary sector enrolments and job‐ready graduates. This will potentially affect the resources sector, manufacturing, the finance industry, education (including maths and science teachers) and computer applications including general ICT, electronic games and media. In particular, enrolments in the ‘enabling’ sciences (mathematics, physics and chemistry), along with agriculture, are diminishing to an extent, following on reduced enrolments in Year 12 science subjects".

Australia's Senate Standing Committee on Education, Employment and Workplace Relations has released on 12 July 2012 a report titled “The shortage of engineering and related employment skills”. Two of the committee’s recommendations focus on STEM ability and courses. These are:
“The committee recommends that the government seeks recommendations from the Chief Scientist about how it can best continue to support the development of science, technology, engineering and mathematics courses.”
“The committee recommends that the government works through the Council of Australian Governments to promote science, technology, engineering and maths ability in states and territories.”

Australia’s Chief Scientist Professor Ian Chubb AC has released two very important reports that highlight the crucial role of STEM education in Australia's future.
The quotes below are found in the Foreword section to each report.
Health of Australian Science, May 2012.
"I doubt that too many would argue with the proposition that science, technology, engineering and mathematics (STEM) will all play an important part in the solutions we find for our future health, security, safety and prosperity as a nation, and as a planet."
Mathematics, Engineering and Science in the National Interest, May 2012.
"The Prime Minister asked that I provide her with advice on means to encourage greater participation in mathematics, statistics and science courses of study at university...
My Report is attached. I have included some consideration of engineering because it is an essential component of the future that is dependent on the mathematics and science disciplines. I was not asked by the Prime Minister to advise her on why Science, Technology, Engineering and Mathematics (STEM) studies are important. I have, however, highlighted some of the action being taken elsewhere in the world, in part to emphasise that we are not alone in facing the issues we face, and that many countries are now taking substantial action as they attempt to reverse the trend of declining interest from students at the exact time that the demand for these skills in the workforce is increasing. It will doubtless result in a significant premium on these skills in a global market."
Authorised by the Head of School, Engineering
8 August, 2013
Future Students | International Students | Postgraduate Students | Current Students
© University of Tasmania, Australia ABN 30 764 374 782 CRICOS Provider Code 00586B
Copyright | Privacy | Disclaimer | Web Accessibility | Site Feedback | Info line 1300 363 864