Introduction

ARC/AMIRA P544

- Aims to compare and contrast Proterozoic sediment-hosted copper deposits in Australia and Zambia
 - Study Areas: Zambia, South Australia, Queensland?, Yeneena Basin?
- The level of basic information and description is low in Zambia (much better in Australia)
- Much previous Zambian work has been model driven

Proposed P554 Framework

- **Basin Architecture**
 - structure
 - sedimentology
 - stratigraphy
 - geophysics
 - fluid flow

- **Deposit Studies**
 - morphology
 - structure
 - sedimentology
 - metal zoning
 - fluid chemistry

- **Deposit models and exploration guidelines**

- **Geochemical Studies**
 - lithogeochemistry
 - alteration
 - isotopes
 - deposit halos

AMIRA P544
Zambia - Introduction

- What is basin vs what is basement?
- In the Roan, what is sedimentary vs structural (vs alteration vs metamorphic) in origin?
- What do the mineral assemblages tell us about alteration, metamorphism and mineralisation?
- What types of fluids have existed in the basin at different times in its history?
- What traps copper?

Zambian Project: Stage 1

David Broughton
- PhD
- regional 'strat.'
- and structure

Stuart Bull
- local and
- regional
- sedimentology
- stratigraphy
- Area 2

David Selley
- local and
- regional
- structure
- Area 2

Peter McGoldrick
- alteration
- lithochemistry
- deposits/haloes

Murray Hitzman
- metamorphic
- petrology
- dating
- isotopes
- Chem stratigraphy

2 PhDs
- Nkana-Mingola?
- Mufwila?
- Konkola?

Rose Lepsic
- carbon and
- oxygen isotope
- chem stratigraphy

PHD project
- nature of
- 'basement'

Basin architecture
and
Mineralization framework
BASEMENT COMPLEX

Lufubu Schists
- Palaeoproterozoic calc-alkaline metavolcanics

Granitoids
- 2.0 Ga granodiorites
- 1.8 Ga granites
- 880 Ma Nchanga Rod Granite

AMIRA P544

Katangan

Muva metasediments
- Mesoproterozoic coarse & medium grained clastics

AMIRA P544
Muva Metasediments

detrital zircons:
1990 Ma
2190 Ma
2390 ma
& older

pan-African ‘event’ c. 500 Ma
Lufilian orogeny c. 650 Ma
Lusakan orogeny c. 840 Ma
AMIRA P544
Basement Complex: schists

- predominantly qtz - musc - biot - chl - (epid) schists
- blue opalescent quartz
- overprinted by feldspathic alteration
- gradational contacts with deformed grey granite
- gradational / indistinct contacts with L.Roan sandstones
- 1970 +/- 10 Ma (Muf)

AMIRA P544

Basement Complex: granites

- zoned: grey core grades to pink/red margin
- opalescent quartz in grey and red granites is probable source for detrital quartz in Roan
- grey granites dated ~1960-1990 Ma
- Nchanga red granite ~ 880 Ma, brackets age of Katangan sedimentation
- potassic metasomatism affects the NRG
- potassic-metasomatized arkoses may be misidentified as NRG

AMIRA P544
Lower Roan

- crude fining-upwards coarse clastic sequence, dominantly oxidized
- ~100 to >1000m thick, variance in basal section
- volumetrically minor dolomite
- broken detrital undeformed opalescent quartz, feldspar
- often poorly bedded & sorted
- pre-lithification / dewatering structures suggest sequence remain fluidized post – D1
- extensive metasomatism obscures / overprints sedimentary structures

Upper Roan

- cyclical dolomite / evaporite / clastic sequence, 200-300 m, dominantly reduced
- base marked by dolomite + evaporite breccias
- dolomites appear secondary or overprinted
- gritty sand-silt clastics, often poorly bedded & sorted, “dewatering” structures present
- opalescent & grey quartz, feldspar grit is present but some appears secondary
- feldspathic-dolomitic alteration in clastics
- correlation of units over 100’s of metres
Mwashia

- siltstones & fine sandstones, +800m thick
- lack of grit, opalescent quartz suggests different provenance from Roan
- "dewatering" structures locally present
- possible cryptalgal laminations preserved in dolomites at top of sequence in Konkola
- abundant anhydrite = former evaporite in Chambishi
- high-Mg basaltic sills/flows in Konkola

Grand Conglomerate

- carbonated conglomeratic schist
- dolomite, slst, sdst, quartz, granite clasts
- unsorted, not graded
- no sedimentary structures preserved
- tillite? uncertain origin
- gradational lower contact with Mwashia pelites and dolomites (KLB94)
- probably correlative with Kansanshi pebble schist
- is there an isotopic excursion that reflects a glaciated origin, as per the Namibian section?
Lower Kundelungu

- dolomitic marbles and phyllites / schists, >300m (~3000m in Congo)
- possible cryptalgal laminations in least-altered marbles
- difficult to distinguish marbles from Mwashia

Evaporites

- found in veins, replacive bands & matrix, pressure shadows, nodules
- apparent widespread movement of sulphates through system
- intergrown with cpy, py, carbonate, quartz
- anhydrite veins have metamorphic biotite selvages identical to carbonate veins
- qtz/carbonate "nodules", bands, breccias replacive after sulphate?
- anhydrite/gypsum present in every lithology and stratigraphic unit below Kundelungu
Metamorphism

- Biotite present throughout Konkola area, defines deformation fabrics, present in dewatering structures
- Biotite both accompanies & destroyed by hydrothermal alteration + mineralization
- Is there a distinction between metamorphic & hydrothermal biotite?
- Epidote present in basement complex (Konkola – Nchanga area)
- Nkana: epidote-stable in Lower Roan, sodic amphibole in ore zones, actinolite in unmineralized zones

K-Feldspar metasomatism

- Minor in Chambishi-Nkana area
- Usually with hematite (stained albite?)
- Vein-associated & pervasive replacement
- Kspar overgrowths
- Generally envelopes Cu zones (Konkola)
- Appears to overprint metamorphic biotite
- Kspar + cpy + bn + anhy + biot veins (Nkana)
- Widespread in L. Roan and red granites (Konkola area)
Fe Oxides

- euhedral porphyroblastic magnetite present in Mwashia, granites
- hematite replaces magnetite, forms disseminated grains, also present along bedding planes and in veins
- oxidized Mwashia + Roan = possible source beds up to 2000 metres thick

The problem of ‘basement’

- Difficulty in distinguishing between Katangan and ‘basement’ on a structural basis.
- Is it possible to distinguish Katangan from ‘basement’ on: (1) textural - (2) geometric bases?
- What is the nature of ‘basement’? ie. true crystalline basement or an earlier phase of the same ‘basin’.

AMIRA P544
NE 112

- Complete representation of stratigraphy.
- Anomalously high strains and metamorphic grade.
- Up to 4 cleavage-forming events recorded throughout entire hole.

AMIRA P544

Structural fabrics developed in "Kundelungu"

AMIRA P544
Katangan Fabric Geometry:
from surface and underground exposures

- Chamblish and Konkola record inclined and upright W-plunging folds consistent with N-directed thrusting.
- Mufulira records only one cleavage which is axial planar to downward facing folds.
- Nkana SOB records 2 prominent cleavages associated with SSW-directed thrusting and upright NW folding respectively.
- Locally 3 folding events at Nkana SOB

AMIRA P544

Fold Geometry at Mufulira

AMIRA P544
Katangan Fabric Geometry:
from surface and underground exposures

- Chambishi and Komboka record inclined and upright W-plunging folds consistent with N-directed thrusting.
- Mufulira records only one cleavage which is axial planar to downward facing folds.
- Nkana SOB records 2 prominent cleavages associated with SSW-directed thrusting and upright NW folding respectively.
- Locally 3 folding events at Nkana SOB

Nkana SOB Fold and Thrust Geometry

- SW-directed thrusting with complex fold geometry
- Early inclined and upright folds are generated during progressive thrust event
Muva Fabric Geometry

- Two to four cleavage forming events
- Early N-directed fold and thrust event (SM1 & 2)
- Two later phases of upright folding
- SM3 may account for dome and basin folding within Katangan

AMIRA P544

Comparison of Katangan and Muva Fabrics

- Broad similarity between the geometry of Muva and Katangan fabrics
 - Initial thrust-related folding about roughly E-W axes
 - Late stage NW trending folds
- Local development of two thrust-related cleavages in the Muva may reflect progressive deformation associated with thrusting

AMIRA P544
Basin or Basement?

- Katangan and Muva systems form part of a common fold belt

- Implications for basin development:

 - architecture of the Muva basin may be reflected in the Katangan

 - mineralising fluids may have interacted with the Muva system

Structural Geology

- bedding can be transposed into S1

- Mwashia appears more deformed than underlying Roan in Konkola area

- mineralization now in tectonic structures

- WNW (D2) folds control ore shoots & deposit geometry at Konkola – generally north-verging

- NE (D3) cuspatate folds related to Konkola barren gap geometry

- breccia at base of Mwashia contains variety of differently-altered clasts and appears to cut S1 fabric

- breccia truncates early ?D1 mega-folds, but is itself folded and cut by quartz-carbonate-biotite veins

- breccia appears to remove section and may represent a thrust: equivalent to Congolese mega-breccias?
Mineralization & alteration

- mineralization occurs throughout section
- Cu (Co) sulphides associated with Fe carbonates, local albization
- bedding-parallel & oblique mineralized veins are widespread, lack depleted halos
- sandy/carbonate/evaporite-rich layers preferred fluid pathways
- Distal facies = pyrite + Fe carbonate
- Konkola barren gap is non-dolomitic, structurally controlled

Regional Correlation

- close-spaced holes at Konkola demonstrate excellent continuity of carbonate & alteration facies, and mineralized zones
- correlation between Konkola – Nchanga – Chambishi demonstrates sedimentary facies changes and/or structural complication of parts of section
- distal equivalents of ore zones are correlative
- Kawiri area- basal Roan sediments appear continuous on Muliaahi Porphyry “basement high”
- thrust breccia equivalent to Congolese mega-breccias?

AMIRA P544
Work Plan, Jan-May 2001

- data compilation of logging to date
- petrography
- preliminary dating
- preliminary C & O isotopic characterization of carbonates in section
- preliminary S isotopic characterization of anhydrite and sulphide through section

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Finding drillcores in key areas not straightforward

DDH NN47 from the Chambishi basin chosen as a typical example of mineralised lower Roan stratigraphy

AMIRA P544

In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Collared in the upper Roan and terminated in Basement Complex (granite/Lufubu Schist)

Opinions on nature of "ore shale" differ

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

With respect to the features you see in the Katangan rocks, two end member views:

- most are primary sedimentary features
- most are alteration and structural fabrics

AMIRA P544

In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Difficult rocks! Roan sediments are fluidised, altered/metamatised, metamorphosed and deformed.

Hard to understand:
- what we are looking at
- reconciling previous interpretations

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

NN47 indicates that care is needed in both:
- discriminating “basement” from Katangan
- interpreting stratigraphy within the Katangan

Can protolith sediments be recognised, or are many so called sediments really alteration and sedimentary structures really structural fabrics?

A - provisionally yes (no sample analysis yet) protolith can be distinguished with careful logging

AMIRA P544

In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Basal part of hole (~lower Roan) was coarse-grained sandstone overprinted by albite

+ interbedded dolomite ± anhydrite zones

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Upper part of hole (~upper Roan) is finer-grained interbedded sand/siltstone

+ interbedded dolomite ± anhydrite zones

• Considerable destruction of primary clastic sedimentary fabrics - fluidisation?

AMIRA P544

In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Fluidisation and associated cc/anhydrite zones spatially related to fold closures and fault zones = synchronous with deformation?

Metamorphic problem - faults are defined by biotite apparently formed while sediments still partly unconsolidated?

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Were there sedimentary carbonates/evaporites present?

A - can't prove it based on what we have seen of the lower Roan

- are suggestions of primary textures higher in the stratigraphy

AMIRA P544

In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Are there real tillites?

A - probably (based on figures in Binda 1972)

- clear from NE 112 that some units interpreted as tillites are probably not

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

A - need to be careful that there is evidence of a sedimentary origin

• e.g. a diverse clast assemblage etc.

Otherwise could be structural dismemberment of Katangan stratigraphy

AMIRA P544
In the Roan, what is sedimentary vs structural (vs alteration vs metamorphism)?

Can we distinguish clastic from cataclastic textures?

Important issue for basin geometry and controls on mineralisation

A - yes with careful observation at a drill core and microscopic scale

Nchanga

Basal Conglomerate

Fault Breccia

L129

∀ Granité ꕿ Footwall arkose ꕿ Ore shale

• Distinguishing between sedimentary origin is critical for basin reconstruction.
• Sedimentary origin indicates considerable thinning of the footwall package and lapping onto ‘basement highs’.

AMIRA P544
Mufulira

- Underground exposures reveal little evidence of high strain or obvious structural control on mineralisation.
- Orebodies hosted by tabular sandstone units
 - minor veining and layer-parallel shear
 - disseminated medium-grained Cu-sulphides

DH 218
- Hangingwall stratigraphy is thoroughly brecciated
- Sulphides concentrate in irregular domains of slightly finer grainsize
 - grain breakage

AMIRA P544

Mufulira footwall sandstone

AMIRA P544
Mufuiira A orebody

AMIRA P544

Mufulira A orebody

AMIRA P544
Mufliira A orebody

AMIRA P544
Using chemical modeling to understand aspects of sediment-hosted base metal deposits

David Cooke
Centre for Ore Deposit Research
University of Tasmania

Why use chemical models?

Hypothesis testing
• Source(s) of metals & ligands
• Understanding metal transport
• Depositional processes - predicting ore and gangue assemblages

Understanding fluid compositions
• Extend our understanding of known fluid compositions
• Estimate fluid compositions for environments where no other options are available

AMIRA P544
Modelling Techniques

- Activity diagrams can be used to illustrate metal transport & deposition conditions in P-T-X space

- Programs such as EQ3/6, CHILLER, THERMODATA, HCH, GEOCHEMISTS WORKBENCH are used to simulate reaction paths and depositional processes

AMIRA P544

Controls on Metal Solubilities

- Temperature
- Salinity
- Redox ($\log f_{O_2}$)
- pH
- Total sulfur concentrations (ΣS)
- (Pressure, ΣC concentrations)

AMIRA P544
Estimating fluid compositions

- Fluid inclusion data \((T, \text{ salinity}, \text{ PIXE analyses, cation ratios, } P?)\)
- Estimates based on observed equilibrium mineral assemblages \((\text{redox, } p\text{H}, \Sigma S, \Sigma C)\)
- Comparison with documented systems
- Calculated solubility relationships \((\text{metals})\)
- Geological relationships \((P, T, X)\)

P384 Modelling Outcomes

- Testing of source-transport-trap hypotheses for a variety of Pb-Zn mineralising brine compositions \((\text{Cooke & Large, 1998})\)
- An understanding of trace metal associations & their implications for brine compositions in Sed-hosted Pb-Zn deposits, resulting in a twofold classification scheme based on fluid chemistry \((\text{Cooke et al., 2000})\)
Cu Solubility Relationships

- What were the conditions favourable for Cu transport in the Zambian Copperbelt? (*low T oxidised, acidic; high T reduced, acidic?*, etc.)
- What were the transporting agents?
- What is the significance of the associated trace metals?
- What are the most effective depositional processes?

AMIRA P544

Previous Work

- Haynes (1986a,b) & Haynes and Bloom (1987a,b) - *low T (<50°C) oxidised, near-neutral chloride brines precipitate Cu-Co-Ag ore via H₂S addition*
- Sverjensky (1989) - *Warm (50-150°C) Cu-Ag-bearing brines can be transported along redbed + anhydrite aquifers (related to Pb-Zn ores?)*
- Rose (1989) - *low T (<100°C) oxidised Cl-rich brines precipitate Cu-Co-Ag ore via reduction*

AMIRA P544
Metal Solubilities: 150°C, 25 eq. wt %, pH = 4.5, ΣS = 0.001 m

AMIRA P544
Metal Solubilities: 150°C, 25 eq. wt %,
pH = 4.5, ΣS = 0.001 m

Results - 150°C calculations

- High Cu solubilities in oxidised 150°C brines at pH = 4.5
- Reduction promotes Cu deposition primarily as chalcocite (+ hm), followed by bn-sid, cp-sid, cp-py and bn-py
- Associated trace elements: Zn, Pb, Ag, Sb
- Au & possibly Ba (?) not present in anomalous concentrations
Forward Program

- Detailed chemical modelling to commence in 2002 (collection of field data, hypothesis generation, completion of other work commitments)
- Addition of Co & Ni thermodynamic data to chemical database
- Consideration of organometallic Cu complexes
- Other trace elements?

What types of fluids have existed in the basin at different times in its history?

Extrabasinal
- magmatic
- metamorphic

Intrabasinal
- connate water
- evaporitic brines (bitters?)
- meteoric
- metamorphic

All of the above!
What types of fluids have existed in the basin at different times in its history? (con)

Several approaches:

- understand the type of basin
- direct observation (fluid inclusions)
- chemical modelling (can use information on ore mineralogy and geochemistry to constrain this)
- hydrological modeling

What traps copper

chemical/physical (geological/hydrological)?
SA - Introduction

Main outcomes
- structural geometry and magmatic events within basement exert a strong influence on the basin history within cover
- sed-hosted Cu is diverse in terms of stratigraphic position, style & genesis

Structure of talk
- geological framework: Palaeoproterozoic - Cambrian
- styles of sed-hosted Cu

Basic stratigraphic elements

Palaeoproterozoic
- clastic-dominated sedimentary package
- deformed during Kimban Orogeny
 - 1840 - 1700 Ma
- KD3 mylonite zones
Early Mesoproterozoic

- Gawler Range volcano-plutonic event (GRVPE: 1595-1580 Ma) - Galwer Craton, Yorke Peninsula and Stuart Shelf regions
 - extension and thermal subsidence

- Olarian Orogeny - Curnamona Province
 - syn-tectonic magmatism roughly coeval with GRVPE

AMIRA P544
Gawler Craton & Stuart Shelf

- GRVPE comprises Gawler Range Volcanics and Hiltaba Suite granites
- NE-SW to NNE-SSW directed extension

Hiltaba Suite
- two geochemical types:
 - Roxby Downs Type - oxidised haematite-magnetite series: U, Th enriched
 - Kokatha Type - less oxidised ilmenite
- two major plutonic provinces:
 - Olympic Dam & Spencer plutonic provinces

Heat Flow

- Roxby Downs type granites correspond with anomalously high heat flow
- elevated surface heat flow values extend below AG towards Mt Painter
- implications for fluid flow?
Middle Mesoproterozoic

- Pandurra Formation represents the first of a series of clastic-dominated rift basins
- rift margins are indistinct
- characterised by considerable thickness variation

AMIRA P544

Neoproterozoic - Cambrian

- series of rift and sag phases
- records progressive breakup of Rodinia from 830 Ma to 515 Ma
- Delamarian compression 515 Ma to 480 Ma

AMIRA P544
Structural Framework

Cu Distribution

- Cu coincides partly with margins of sub-basins and platformal shoulders

AMIRA P544
Stuart Shelf Cu

Size and Grade

- Mt Gunson: 5.6 Mt @ 2.1% Cu
- Emmie Bluff: 24 Mt @ 1.3% Cu
- Myall Creek: up to 1.5% Cu
Stratigraphic controls on Cu

- Unconformable contact of the Pandurra Sandstone and Whyalla sandstone
- permeable horizons within the Tapley Hill Formation
 - main mineralised zone at the unconformable base
 - minor mineralisation at the top

Local structural controls

Mt Gunson
- Pernatty Upwarp - series of N-S trending horst blocks
- emergent at least by Whyalla Sandstone time
- THF-hosted mineralisation restricted to narrow NW trending 'palaeovalleys'

AMIRA P544
Structural controls (cont.)

Myall Creek
- half-graben geometry - but no direct association with known structure
- minor N-S 'palaeovalleys'
- no association with 'basement highs'

Mineralisation

Sandstone-hosted deposits
- Cu sulphides occupy secondary porosity in brecciated upper surface of Pandurra
- Ore mineral paragenesis:
 - Fe-oxides → pyrite → Cu sulphides
- sphalerite and galena represent final mineral products in the ore paragenesis
- no evidence of hydrothermal alteration
Replacement textures

Mineralisation (Cont.)

Tapley Hill Formation Cu
- permeable sandstone/silt beds or lamellae
- vein hosted mineralisation in less permeable strata
- Fe and Ti are depleted in mineralised zones
- strong correlation of C_{organic}, Fe and S
- base metal sulphide introduced late
Ore Genesis

Stage 1: Recrystallised upper surface of Panduro Formation, concentration of Fe-Rich fluids and/or Fe-silicates via mechanical disruption or precipitation from solution. Pervasive I-FI derived from biotite reduction of sulfide,

Stage 2: Reduced fluids, potentially derived from I-FI adjacent with or within Fe-oxides, leading to concentration of pyrite in upper Panduro surface.

Stage 3: Base metal-rich fluids interact with early formed pyrite to precipitate progressively more Cu-rich Fe-Cu sulphides.

Summary

- Palaeoproterozoic - early Mesoproterozoic structures are long lived and influence:
 - Hiltaba Suite granites
 - Neoproterozoic - Cambrian basin geometry
- Spatial association of Roxby Downs type granites with:
 - surface heat flow
 - Neoproterozoic - Cambrian rift packages
 - Fe-stone and sed-hosted Cu
- Structural geometry of Delamarian Orogen is directly related to Neoproterozoic-Cambrian basin geometry
Summary (cont.)

- Sed-hosted Cu displays broad spatial association with:
 - inverted basin margin faults
 - platformal margins of major rift depocentres
 - inner arc of Delamarian thrust belt
 - syn-orogenic fluid flow and Cu mineralisation?

- Stratabound Cu mineralisation on the Stuart Shelf is low-T and lacks evidence of hydrothermal fluid
 - Cu mineralisation is late stage
 - pyrite is only truly syngentic sulphide

AMIRA P544
Zambian Forward Program

David Broughton
- PhD
- regional "strat." and structure

Stuart Bull
- local and regional sedimentology
- stratigraphy
- Area 2

David Selley
- local and regional structure
- Area 2

2 PhDs
- Nkana-Mindola?
- Mufuira?
- Koscoka?

Peter McGoldrick
- alteration
- lithogeochemistry
- deposit halos

Murray Hitzman
- metamorphic petrology
- dating
- Sr isotope chemosratigraphy

Ross Large
- carbon and oxygen isotope chemosratigraphy

PhD project
- nature of "basement"

Basin architecture and Mineralization framework

South Australia Forward Program

Willouran Ranges Transect
- controls on minor Cu occurrences
- basis for fluid flow modelling
- field work next autumn
- construct section for fluid modelling

Emmie Bluff & Mt Gunson deposit studies
- paragenesis of sandstone & siltstone hosted Cu deposits
- geochemical signatures of Cu mineralisation
- visit Mt Gunson & review core at PIRSA library
- lithogeochemistry

AMIRA P544
Budget Considerations

- total ARC and AMIRA income has now reached target (abt. A$1.4 million)
- however the decline in the A$ coupled with relative increase in work offshore means an overall 20% drop in the budget in real terms
- thus, two further sponsors are required to complete the proposed work and balance the 3 year budget

Future P544 meetings

- Zambian field trip late July 2001?
- End of year meeting in Denver in mid-November?
- SA field trip in mid-2002?