DISTRIBUTED SIMULATION PROJECT
Management of IV Fluids and Electrolytes

Joy Hills 2013 | RN, BSN, MSN (Cancer), SpecCertCR (Onc)
Professional responsibilities

• Obtaining and adhering to organisational guidelines. (Including scope of practice guidelines)

• Have appropriate theory and skill preparation.

• Maintain individual accreditation in compliance with institutional or hospital guidelines.
Objectives

Having completed this session you will be able to:

• Explain the uses of IV therapy, the role of red and white blood cells, platelets, plasma, and the six major electrolytes in intracellular and extracellular fluid
• Understand osmolarity and the classification of solutions as hypertonic, isotonic and hypotonic
• Understand the rationale for using/avoiding colloids, crystalloids, blood and blood products in different circumstances
• Detect and respond appropriately to IV complications and the early manifestations of excesses and deficits of the six major electrolytes
Definitions

- **Intracellular** – fluid within the cell
- **Extracellular** – fluid outside the cell but in the interstitial space and in intravascular fluid
- **Interstitial** – fluid between the cells – in the interspaces of a tissue – situated between the parts
- **Intravascular** – within the vessel or vessels
- **Homeostasis** – the tendency of biological systems to maintain relatively constant conditions in the internal environment, while continuously interacting with and adjusting to changes that originate within the system and outside the system
Transport of fluids

- **Diffusion** – the movement of molecules/solutes through a semipermeable membrane from a high concentration to a low concentration

- **Osmosis** – the one way passage of water through a semipermeable membrane from a low concentration of particles to a high concentration of particles

- **Filtration** – fluid going through a filter under pressure or passage through a material that prevents passage of certain molecules

- **Active transport** – electrolytes move from a low concentration to a high concentration by moving against the concentration gradient. ATP provides the energy needed to do this.
IV therapy

- As many as 75% of patients admitted into hospital receive some type of IV therapy
- 50%-70% of the average human is body fluids

Distribution of fluid in the body is:

1/3 extracellular fluid
 - Interstitial fluid
 - Plasma or intravascular fluid
 - Transcellular fluid

2/3 intracellular fluid
 - Fluid within a cell
 - Red blood cells
 - Other cells
Uses of IV therapy

- Establish or maintain fluid and/or electrolyte balance
- Administer medication continuously or intermittently
- Administer bolus medication
- Administer fluid to maintain venous access in case of an emergency
- Administer blood or blood products
- Administer intravenous anaesthetics
- Maintain or correct a patient’s nutritional status
- Administer diagnostic reagents
- Monitor haemodynamic functions
- Correct acidosis or alkalosis
IV therapy

Types of IV fluids

1. Crystalloids
2. Colloids
3. Blood and blood products
Crystalloids

- Crystalloids are water with electrolytes that form a solution that can pass through semi permeable membranes.
- They are lost rapidly from the intravascular space into the interstitial space.
- They can remain in the extracellular compartment for about 45 minutes.
- Because of this, larger volumes than colloids are required for fluid resuscitation.
- Eventually, water from crystalloids diffuses through the intracellular fluid.
Crystalloids cont:

Hypertonic
- A hypertonic solution draws fluid into the intravascular compartment from the cells and the interstitial compartments.
 Osmolarity is higher than serum osmolarity

Hypotonic
- A hypotonic solution shifts fluid out of the intravascular compartment, hydrating the cells and the interstitial compartments.
 Osmolarity is lower than serum osmolarity

Isotonic
- Because an isotonic solution stays in the intravascular space, it expands the intravascular compartment.
 Osmolarity is the same as serum osmolarity
Common crystalloids

<table>
<thead>
<tr>
<th>Solution</th>
<th>Type</th>
<th>Uses</th>
<th>Nursing considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextrose 5% in water (D5W)</td>
<td>Isotonic</td>
<td>Fluid loss, Dehydration, Hypernatraemia</td>
<td>Use cautiously in renal and cardiac patients, Can cause fluid overload, May cause hyperglycaemia or osmotic diuresis</td>
</tr>
<tr>
<td>0.9% Sodium Chloride (Normal Saline-NaCl)</td>
<td>Isotonic</td>
<td>Shock, Hyponatraemia, Blood transfusions, Resuscitation, Fluid challenges, Diabetic Keto Acidosis (DKA)</td>
<td>Can lead to overload, Use with caution in patients with heart failure or oedema, Can cause hyponatraemia, hypernatraemia, hyperchloraemia or calorie depletion</td>
</tr>
<tr>
<td>Lactated Ringer’s (Hartmanns)</td>
<td>Isotonic</td>
<td>Dehydration, Burns, Lower GI fluid loss, Acute blood loss, Hypovolaemia due to third spacing</td>
<td>Contains potassium, don’t use with renal failure patients, Don’t use with liver disease, can’t metabolise lactate</td>
</tr>
<tr>
<td>0.45% Sodium Chloride (1/2 Normal Saline)</td>
<td>Hypotonic</td>
<td>Water replacement, DKA, Gastric fluid loss from NG or vomiting</td>
<td>Use with caution, May cause cardiovascular collapse or increased intracranial pressure, Don’t use with liver disease, trauma or burns</td>
</tr>
<tr>
<td>Dextrose 5% in ½ normal saline</td>
<td>Hypertonic</td>
<td>Later in DKA</td>
<td>Use only when blood sugar falls below 250mg/dl</td>
</tr>
<tr>
<td>Dextrose 5% in normal saline</td>
<td>Hypertonic</td>
<td>Temporary treatment from shock if plasma expanders aren’t available, Addison’s crisis</td>
<td>Contra-indicated for cardiac or renal patients</td>
</tr>
<tr>
<td>Dextrose 10% in water</td>
<td>Hypertonic</td>
<td>Water replacement, Conditions where some nutrition with glucose is required</td>
<td>Monitor blood sugar levels</td>
</tr>
</tbody>
</table>
Colloids

- Colloids contain solutes in the form of large proteins or other similar sized molecules
- They cannot pass through the walls of capillaries and into cells
- They remain in blood vessels longer and increase intravascular volume
- They attract water from the cells into the blood vessels
- But this is a short term benefit and
- Prolonged movement can cause the cells to lose too much water and become dehydrated
Common colloids

<table>
<thead>
<tr>
<th>Colloid</th>
<th>Action/use</th>
<th>Nursing considerations</th>
</tr>
</thead>
</table>
| Albumin (Plasma protein) 4% or 20% | Keeps fluids in vessels
Maintains volume
Primarily used to replace protein and treat shock | May cause anaphylaxis (a severe, often rapidly progressive allergic reaction that is potentially life threatening) – watch for/report wheeze, persistent cough, difficulty breathing/talking, throat tightness, swelling of the lips, eyes, tongue, face, loss of consciousness. May cause fluid overload and pulmonary oedema |
| Dextran (Polysaccharide) 40 or 70 | Shifts fluids into vessels
Vascular expansion
Prolongs haemodynamic response when given with HES | May cause fluid overload and hypersensitivity
Increased risk of bleeding
Contraindicated in bleeding disorders, chronic heart failure and renal failure |
| Hetastarch (HES) (synthetic starch) 6% or 10% | Shifts fluids into vessels
Vascular expansion | May cause fluid overload and hypersensitivity
Increased risk of bleeding
Contraindicated in bleeding disorders, chronic heart failure and renal failure |
| Mannitol (alcohol sugar) 5% or 10% | Oliguric diuresis
Reduces cerebral oedema
Eliminates toxins | May cause fluid overload
May cause electrolyte imbalances
Cellular dehydration
Extravasation may cause necrosis |
Blood and blood products

<table>
<thead>
<tr>
<th>Blood Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>Plasma is the liquid part of the blood. It is often used to add volume to the blood system after a large loss of blood. Cryoprecipitate is a concentrated source of certain plasma proteins and is used to treat some bleeding problems.</td>
</tr>
<tr>
<td>Red blood cells</td>
<td>Red Blood Cells carry oxygen from the lungs to other parts of the body and then carry carbon dioxide back to the lungs. Severe blood loss, either acute haemorrhagic or chronic blood loss, dietary deficit or erythropoietic issue of the bone marrow can result in a low red blood cell count – called anaemia. A transfusion of whole blood or packed red blood cells may be needed to treat acute blood loss or anaemia.</td>
</tr>
<tr>
<td>White blood cells</td>
<td>White Blood Cells help fight infection, bacteria and other substances that enter the body. When the white blood cell count becomes too low, it is called Neutropenia. G-CSF injections may be needed to treat Neutropenia.</td>
</tr>
<tr>
<td>Platelets</td>
<td>Platelets help blood to clot. Platelet transfusions are given when the platelet count is below normal.</td>
</tr>
</tbody>
</table>
Complications of IV Therapy

- Local complications at the site including
 - Extravasation
 - Phlebitis/Thrombophlebitis
 - Haematoma
 - Infection
- Fluid overload – Acute Pulmonary Oedema (APO)
- Electrolyte imbalance – Cardiac arrhythmias
- Transfusion reactions – Anaphylaxis
- Air embolus
Electrolytes

Electrolytes are minerals in body fluids that carry an electric charge. Electrolytes affect the amount of water, the acidity of blood (pH), muscle function, and other important processes in the body.

There are six major electrolytes:

- Sodium – \(\text{Na}^+ \) Major cation in extracellular fluid (ECF)
- Potassium – \(\text{K}^+ \) Major cation in intracellular fluid (ICF)
- Calcium – \(\text{Ca}^{++} \) Major cation found in ECF and teeth and bones
- Chloride – \(\text{Cl}^- \) Major anion found in ECF
- Phosphate – \(\text{PO}_4^{3-} \) Major anion found in ICF
- Magnesium – \(\text{Mg}^{++} \) Major cation found in ICF (closely related to \(\text{Ca}^{++} \) and \(\text{PO}_4 \))
Sodium (Na\(^+\))
Normal Serum Level 135-145 mmol/L

Function
- Maintains extracellular function (ECF) osmolarity
- Influences water distribution
- Affects concentration, excretion and absorption of potassium and chloride
- Helps regulate acid-base balance
- Aids nerve and muscle fibre impulse transmission
Sodium
signs and symptoms of imbalance

Hyponatraemia
- Fatigue
- Muscle weakness
- Muscle twitching
- Decreased skin turgor
- Headache
- Tremor
- Seizures
- Coma

Hypernatraemia
- Thirst
- Fever
- Flushed skin
- Oliguria
- Disorientation
- Dry sticky membranes
Potassium (K⁺)
Normal Serum Level 3.5 – 5.0 mmol/L

Function
- Maintains cell electro-neutrality
- Maintains cell osmolarity
- Assists in conduction of nerve impulses
- Directly affects cardiac muscle contraction (re-polarisation in the action potential)
- Plays a major role in acid-base balance
- Sodium – Potassium gradient plays a major role in fluid balance between extracellular (ECF) and intracellular (ICF) compartments
Potassium signs and symptoms of imbalance

Hypokalaemia
- Decreased peristalsis, skeletal muscle and cardiac muscle function
- Muscle weakness or irritability/cramps
- Decreased reflexes
- Fatigue
- Rapid, weak irregular pulse
- Cardiac arrhythmias/cardiac arrest
- Decreased blood pressure
- Decreased bowel motility
- Paralytic ileus

Hyperkalaemia
- Muscle weakness
- Nausea
- Diarrhoea
- Oliguria
- Paraesthesia (altered sensation) of the face, tongue, hands and feet
- Cardiac arrhythmias/cardiac arrest

Note: Potassium is a heavy solute that needs to disperse thoroughly in IV fluid - care should be taken when administering to avoid fatal consequences.
Calcium (Ca$^{++}$)
Normal Serum Level 2.15-2.55 mmol/L

Function

• Enhances bone strength and durability
• Helps maintain cell-membrane structure, function and permeability
• Affects activation, excitation and contraction of sino-atrial node (intrinsic cardiac pacemaker), cardiac and skeletal muscles
• Participates in neurotransmitter release at synapses
• Helps activate specific steps in blood coagulation
• Activates serum complement in immune system function
Calcium

signs and symptoms of imbalance

Hypocalcaemia
- Muscle tremor
- Muscle cramps
- Tetany
- Tonic-clonic seizures
- Parasthesia
- Bleeding
- Arrhythmias
- Hypotension
- Numbness or tingling in fingers, toes and around the mouth

Hypercalcaemia
- Lethargy
- Fatigue
- Depression
- Confusion
- Headache
- Muscle flaccidity
- Nausea, vomiting
- Anorexia
- Constipation
- Hypertension
- Polyuria
- Cardiac arrhythmias and ECG changes (shortened QT interval and widened T wave)
Chloride (Cl\(^-\))
Normal Serum Level 95-110 mmol/L

Function

- Maintains serum osmolarity
- Combines with major cations to create important compounds, such as sodium chloride (NaCl), hydrochloride (HCl), potassium chloride (KCl) and calcium chloride (CaCl\(_2\)) which contribute to acid/base and/or electrolyte balance
Chloride signs and symptoms of imbalance

Hypochloraemia
- Increased muscle excitability
- Tetany
- Decreased respirations

Hyperchloraemia
- Headache, difficulty concentrating
- Drowsiness, stupor
- Rapid, deep breathing (hypercapnia)
- Muscle weakness
Phosphate (PO$_4^-$)
Normal Serum Level 0.8-1.5 mmol/L

- Function
- Helps maintain bones and teeth
- Helps maintain cell integrity
- Plays a major role in acid-base balance (as a urinary buffer)
- Promotes energy transfer to cells
- Plays essential role in muscle, red blood cell and neurological function
Phosphate

Signs and symptoms of imbalance

Hypophosphataemia

• Parasthesia (circumoral and peripheral)
• Lethargy
• Speech defects (such as stuttering)
• Muscle pain and tenderness

Hyperphosphataemia

• Renal failure
• Vague neuro-excitability to tetany and seizures
• Arrhythmias and muscle twitching with sudden rise in phosphate (PO₄) level
Magnesium (Mg++)
Normal Serum Level 0.70-1.05 mol/L

Function
- Activates intracellular enzymes; active in carbohydrate and protein metabolism
- Acts on myo-neural vasodilation
- Facilitates Na⁺ and K⁺ movement across all membranes
- Influences Ca²⁺ levels
Magnesium
signs and symptoms of imbalance

Hypomagnesaemia
- Dizziness
- Confusion
- Seizures
- Tremor
- Leg and foot cramps
- Hyperirritability
- Arrhythmias
- Vasomotor changes
- Anorexia
- Nausea

Hypermagnesaemia
- Drowsiness
- Lethargy
- Coma
- Arrhythmias
- Hypotension
- Vague neuromuscular changes (such as tremor)
- Vague GI symptoms (such as nausea)
- Peripheral vasodilation
- Facial flushing
- Sense of warmth
- Slow, weak pulse
References

- Fast Bleep. Medical notes – Fluid Management.
 http://www.fastbleep.com/medical-notes/other/15/31/205

