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Abstract

This paper shows that the impact of the global money supply is disproportionally
high for energy than for non-energy commodities prices. An increase in the global
money supply for energy commodity prices results mostly in demand-pull inflation.
However, for non-energy commodity prices, an increase in global money supply results
in demand-pull inflation and cost-push inflation, as energy is a critical input for
non-energy commodities. We introduce a Markov Switching framework with time-
varying transition probabilities to quantify this effect. This macro-econometric model
accounts for periods when the global money supply growth is slow, moderate, and
fast. We find that the response to global money supply shocks is higher for energy
than for non-energy commodity prices. We also find heterogeneous responses for both
energy and non-energy commodities across regimes.
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1 Introduction

Understanding and quantifying the impact of global money supply on commodity prices is

vital for monetary and fiscal policies. Commodity prices are important causes of macroe-

conomic fluctuations, such as inflation. Central banks increasingly coordinate global mon-

etary policies in response to global financial and economic developments (see for example

Kose et al., 2003, Taylor, 2013, Rey, 2015, and Miranda-Agrippino and Rey, 2020). The

great recession (2008) and the great pandemic (2020) showed increasing coordination among

central banks, resulting in an extraordinary increase in the global money supply. A frequent

result in empirical macroeconomic studies is that increases in money supply lead to com-

modity prices overshooting (see for example the pioneer works of Frankel and Hardouvelis,

1983, and Frankel, 1984). In this paper, we look at this money-driven overshooting of com-

modity prices through the lenses of energy and non-energy commodity prices. We argue

that an increase in the global money supply for energy commodity prices results solely

in demand-pull inflation. In contrast, for non-energy commodity prices, an increase in

global money supply results in demand-pull inflation and cost-push inflation since energy

prices are a key input on all non-energy commodities (such as agriculture, raw material,

fertilizers, precious metal, metals, and minerals). Consequently, the impact of the global

money supply is expected to be larger for energy commodity prices than for non-energy

commodity prices.

The literature on the relationship between the money supply and commodity prices

dates back to the pioneering works of Frankel and Hardouvelis (1983), and Frankel (1984),

who propose a theoretical model of overshooting in commodity markets. Since commodities

trade in competitive and efficient financial markets, they will likely react to unanticipated

movements of money growth also in the short run and more than proportionally. Figure 1

shows the monthly global money supply growth, together with the percentage log-returns of

the commodity index at the same frequency, in the period from January 1996 to October

2020. It is worth noting that significant changes in the money supply may anticipate

changes in the price of commodities. As Frankel and Hardouvelis (1983) and Frankel (1984)

suggest, commodities seem to react more than proportionally to changes in the money

supply. The most visible example was during the global financial crisis when the money
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supply suffered a large contraction followed by a considerable drop in commodity prices.

Similar patterns can be observed in the first months of 2010 and 2015, respectively.

Darius (2010) and Belke et al. (2010) find that global money supply shocks impact

commodity prices. Ratti and Vespignani (2013) shows that monetary shocks in the BRIC

countries have a more pronounced effect on commodity prices when compared to monetary

shocks which come from the G3 economies. However, these studies are conducted in a linear

framework, neglecting the possibility that the stance of the response may vary according to

phases of economic activity. An exception is the work by Beckmann et al. (2014), who study

the relationship between money supply and commodity prices, setting a Markov Switching

(MS) Error Correction model in which the short-run dynamic is subject to regime shifts.

Specifically, Beckmann et al. (2014) find evidence of two regimes that they identify as a

regime in which commodity prices respond to disequilibria and a regime in which they do

not. In contrast, we identify three different regimes underlying the money supply growth,

which can be classified as periods of low, moderate, and excessive money supply growth.

We propose a Markov Switching framework with time-varying transition probabilities

to estimate the impact of the global money supply on energy and non-energy commodity

prices. Based on time-varying transition probabilities, our macro-econometric model dis-

tinguishes amongst three regimes; when global money supply growth is slow, moderate,

and fast in response to different stages of the global financial cycle. To the best of our

knowledge, this topic has not yet been studied within an MS framework with time-varying

transition probabilities. This macro-econometric model is beneficial to understand the

quantitative effect of global money supply on commodity prices at different stages of the

global business cycle, providing critical information to policymakers and the private sector

alike.

Our results suggest that energy commodity prices have the highest response (almost

twice) in terms of magnitude. After one year, the impact of one standard deviation increase

of an unanticipated global money supply shock is associated with a 20.3%(11.3%) increase

in energy (non-energy) prices in the slow-money supply regime. For the moderate money-

supply regime, the impact of one standard deviation increase of an unanticipated global

money supply shock is associated with a 15.6%(7.4%) increase in energy (non-energy)
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commodity prices. Finally, for the fast money-supply regime, the impact of one standard

deviation increase of an unanticipated global money supply shock is associated with a

14.0%(6.0%) increase in energy (non-energy) commodity prices. Therefore, we present a

plausible theoretical explanation of why the impact of unanticipated global money supply

shocks is larger for energy than for non-energy commodity prices.

The remainder of this paper is organized as follows: in Section 2, we present the trans-

mission mechanism of unanticipated global money supply shocks on energy and non-energy

commodity prices. In Section 3, we introduce the MS-VAR model with time-varying tran-

sition probabilities and its relative estimation procedure. Section 4 describes the data. In

Section 5, we report pieces of evidence of three regimes driving the money supply variable.

In Section 6 we inspect the effect of an unanticipated shock of global money supply on

commodity (energy and non-energy together) prices within each regime. In Section 7, the

heterogenous responses of different commodity sectors to money supply shock are reported.

Finally, in Section 8, the conclusions are drawn.

2 The transmission mechanism of an unanticipated

global money supply shocks on energy and non-

energy commodity prices

In this section, we introduce the mechanism which leads the impact of monetary policy

on energy commodity prices to be more pronounced than on the prices of the non-energy

commodity sector. First, it is useful to recall the transmission mechanism of the global

money supply to commodity prices. In the same spirit of Frankel (1986), an unanticipated

increase in the money supply leads to higher expected inflation. Since commodity prices

are not sticky as other goods, the higher demand for commodities pushes up the prices. We

show, however, that monetary policy has a heterogenous effect on energy and non-energy

commodity prices/sectors.

Energy commodities are by far the largest commodity market in the world. For example,

the crude oil market capitalization reached 1.41 trillion US dollars by 2021. Within the

energy market, fossil fuel energy (oil, coal, and gas) combined accounts for around 85% of
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the global energy consumption by 2021, according to Ritchie et al. (2022).

Energy commodities are a key input on all non-energy commodities (such as agriculture,

raw material, fertilizers, precious metal, metals, and minerals).1 For example, a notable

case is agriculture commodities which are energy-intensive sectors as the required energy

both directly in the form of fuel and electricity and indirectly through the use of energy-

intensive inputs, such as fertilizers and pesticides, and transport. Similarly, precious metals,

other metals, mineral extraction, and explorations also heavily rely on energy.

Consequently, an increase in the global money supply affects energy and non-energy

commodity prices differently. More precisely, for an energy commodity prices, an increase

in global money supply results in an increase in demand (demand-pull inflation), while for a

non-energy commodity prices, an increase in global money supply results in both increases

in demand (demand-pull inflation) but also a shift in supply (or cost-push inflation).

Figure 2 shows the different responses of energy and non-energy commodity prices to a

global increase in the money supply. Figure 2(a) shows that when the global money supply

increases, the demand for energy commodities shifts from D′ to D′′. The intersection of Q′′

and P ′′ is the new equilibrium E ′′. The impact of an increase in global money supply on the

non-energy commodity is illustrated in Figure 2(b). This figure shows that for non-energy

commodities, an increase in global money supply led to a demand increase from D′ to D′′

and prices from P ′ to P ′′. However, because energy commodities are an input of production

of non-energy commodities, S ′ shifts to the left to S ′′ reflecting a higher cost of production

due to an increase in the cost of energy inputs. This shift in supply (and its respective

price increase) reduces demand towards the new equilibrium E ′′′. Consequently, the final

equilibrium for energy commodity prices is higher than for non-energy commodities.

3 The methodology

To assess the impact of an increase in global money supply on energy and non-energy

commodity prices, we rely on a Markov Switching (MS) framework, see Hamilton (1989)

1Note that we use the definitions of the World Bank where energy commodities are oil, coal, and
gas, and non-energy commodities include agriculture (beverages, food, grains, and other foods), the raw
material (timber and other raw materials), fertilizers, precious metal, and metals and minerals. Please see:
Commodity Markets (worldbank.org) for more details.
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and Krolzig (1997), among others. MS models, allowing parameters to vary according to

regimes, are powerful tools for modeling economic expansions and contractions. The MS

literature is vast, and it proceeds in both directions: methodological and empirical. From

a methodological perspective, the baseline MS time series model introduced by Hamilton

(1989) has been extended to allow transition probabilities to vary over time, see Kaufmann

(2015), Billio et al. (2016), and Bazzi et al. (2017). From an empirical perspective, al-

though MS models have been employed to inspect the impact of an energy price shock

on macroeconomic quantities, (Kilian, 2008, Hamilton, 2011), the literature overlooks the

relationship between commodity variables and global money supply. This is the first at-

tempt to study the impact of global money supply on energy and non-energy commodity

prices within an MS framework with time-varying transition probabilities to the best of

our knowledge.

3.1 The model

Let {yt}Tt=1 denote a time series of K-variate economic observations. We assume that the

probability distribution of {yt}Tt=1 depends on the realizations of a latent discrete-time

Markov chain process. The reduced form of the MS-VAR model reads as:

yt = a(st) +
P∑

p=1

Apyt−p + εt, εt ∼ NK(0,Σ(st)), (1)

where a(st) is a K × 1 vector of intercepts with st ∈ {1, . . . ,M} being the realization of a

latent Markov chain process; Ap is aK×K matrix containing the autoregressive coefficients

where p is the number of lags; NK(·, ·) denotes a K-variate Normal distribution; and Σ(st)

is a K×K variance-covariance matrix. Following Krolzig et al. (2000), Billio et al. (2016),

and Baştürk et al. (2014), we allow intercepts and the variance-covariance matrix to vary

across regimes, and we restrict the autoregressive coefficients to be regime-independent.

This assumption is motivated by Clements and Krolzig (1998), who show that the intercept

mainly drives forecasting errors.

The stochastic properties of the latent Markov chain are described by the (M × M)-
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matrices of time-varying transition probabilities:

Pt =


pt,11 pt,12 . . . pt,1M

pt,21 pt,22 . . . pt,2M
...

...
. . .

...

pt,M1 pt,M2 . . . pt,MM

 , (2)

with pt,ij = P(st = i|st−1 = j,Vt,θ
ij), ∀i, j ∈ {1, . . . ,M} where Vt is a set of N exogenous

variables and θij is a vector of parameters. Following Kaufmann (2015) and Billio et al.

(2016), we model the time-varying transition probabilities using a Logit specification. Ac-

cordingly, a centered parametrization of the transition probabilities, in which exogenous

variables drive the time variation of the transition probabilities, is assumed as follows:

pt,ij =
exp

(
(Vt − c)′ θij1 + θij0

)∑M
i=1 exp

(
(Vt − c)′ θij1 + θij0

) , i, j = 1, . . . ,M, (3)

where θij =
(
θij0 ,θ

ij′

1

)′
and c is a vector of threshold parameters chosen to be the average

of Vt. For identification purposes, we let M be the reference regime. We assume that the

vectors containing the parameters which drive the transition to the reference regime are

null, i.e., θMj = 0, ∀j = 1, . . . ,M .2

As standard in the MS literature, the model is re-parametrized using a partition of the

set of regressors to simplify the estimation procedure’s exposition. Particularly, (1,y
′
t−1, . . . ,y

′
t−p)

is divided into M + 1 subsets: x0t =
(
y′
t−1, . . . ,y

′
t−P

)′
, a (KP × 1) vector of regime-

independent coefficients, and xit = 1, i = 1, . . . ,M , which are M vectors of one regime

specific regressors. Finally, let ξt = (ξ1,t, . . . , ξM,t)
′
be the vector of indicator functions

which contains information regarding the realization of the latent Markov chain process,

st, namely, ξi,t = Ist=i, for i = 1, . . . ,M and t = 1, . . . , T , and rewrite the model in Equation

(1) as follows:

yt = X0tγ0 +
M∑
i=1

ξitXitγi + εt, εt ∼ NM (0,Σ (ξt)) , (4)

2Please note that for θij1 = 0, ∀i, j = 1, . . . ,M , the MS-VAR with time-varying transition probabilities
reduces to the case with constant probabilities.
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where: X0t = (IK ⊗ x′
0t) and Xit = IK are, respectively, the regime-invariant and the

regime-specific regressor matrices; γ0 = vec
(
(A1, . . . ,AP )

′)′ are the regime-invariant au-

toregressive parameters; Σ (ξt) = Σ (ξt ⊗ IK) where Σ = (Σ1, . . . ,ΣM) with Σi being the

K ×K regime specific variance-covariance matrix, and Σ(st) =
∑M

i=1Σiξit, see Equation

(1); finally γi = ai is a (K×1) vector containing the regime dependent equation intercepts,

and a(st) =
∑M

i=1 aiξit, see Equation (1).

3.2 Bayesian inference

Given the generous parametrization of the MS-VAR model introduced in Section 3.1, the

estimation strategies rely on Bayesian techniques. The possibility of restricting parameters

with different prior beliefs makes Bayesian methods a powerful tool in macroeconomics to

overcome overfitting issues, issues that may arise from many free parameters and the short

time series, see Ciccarelli and Rebucci (2003).

We set up a Gibbs sampler algorithm to draw from the conditional posterior distribu-

tions, particularly we use the multi-move strategy to filter the latent regimes (Chib, 1996,

Krolzig, 1997). The conditional posterior distribution from which parameters are sampled

is retrieved by combining the complete data likelihood p(y,Ξ|ϕ), where ϕ = (γ,Σ,θ),

with the prior distribution p(ϕ) as follows:

p(ϕ,Ξ|y) ∝ p(y,Ξ|ϕ)p(ϕ), (5)

where: y = vec(y1, . . . ,yT ) is the TK×1 vector containing the observation; Ξ = (ξ1, . . . , ξT )

is the MT × 1 vector of indicator variables; γ = vec(γ1, . . . ,γM) is a vector of the regres-

sor coefficients; and θ contains the parameters of the time-varying transition probabilities.

Moreover:

p (y,Ξ|ϕ) = (2π)−
TK
2

T∏
t=1

|Σ (st)|−
1
2 exp

{
−1

2
u′
tΣ (st)

−1 ut

} M∏
i=1

M∏
j=1

p
ξitξjt−1

ij , (6)
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and ut = yt − ((1, ξ′t)⊗ IK)Xtγ, with:

Xt =


X0t X1t . . . 0
...

...
. . .

...

X0t 0 . . . XMt

 . (7)

The Gibbs sampler is divided into four steps. We first draw from the conditional

posterior distribution of the VAR coefficients, γ0, independent of the hidden Markov chain.

Secondly, we draw the state-dependent intercepts, γi, together with the variance-covariance

matrix, Σi. Then, we draw from the conditional posterior distribution of the parameters of

the transition probabilities, θij. Finally, the fourth step draws the vector of latent states,

Ξ. Defining γ(−i) = (γ1, . . . , γi−1, γi+1, . . . , γM) and Σ(−i) = (Σ1, . . . ,Σi−1,Σi+1, . . . ,ΣM)

we can sketch here the estimation algorithm:

1) Draw γ0 from f(γ0|y,Ξ,γ(−i),Σ);

2) For i = 1, . . . ,M :

(a) draw γi from f(γi|y,Ξ,γ(−i),Σ) ;

(b) draw Σ−1
i from f

(
Σ−1

i |y,Ξ,γi,Σ(−i)

)
;

3) Draw θj1, . . . ,θj(M−1) from f
(
θj1, . . . ,θj(M−1)|y,Ξ,γi

)
;

4) Draw Ξ from p (Ξ|y,γ,Σ,θ).

Details regarding the full posterior distributions in 1) to 3) are given in Appendix

B, while the latent states are sampled using the multi-move sampling strategy (Chib,

1996; Krolzig, 1997). When dealing with mixture models in a Bayesian framework, the

estimation must explicitly treat the invariance of the likelihood under relabelling of the

mixture components to avoid the so-called label switching problem, described the first

time by Redner and Walker (1984). The literature proposes different solutions to deal with

it, see Frühwirth-Schnatter (2006) and references therein for an extensive discussion. To

address the label switching, we constrain the intercept of the global money supply equation,

αGL
i , ∀i = 1, . . . ,M , to be increasing across regimes, namely αGL

1 < αGL
2 < . . . < αGL

M . This

9



restriction has clear implications for the model and its interpretation. Indeed, imposing

such a restriction implies that the conditional mean of the global money supply growth

is lower in the first regime. Accordingly, it increases across regimes when moving to the

Mth regime. This assumption is consistent with our interpretation of the regimes since

our objective is to distinguish between periods of low money growth and periods of high

money growth.

4 Data

Following Ratti and Vespignani (2015), we construct the global money supply variable

using M2 denominated in US dollars of the seven largest economies worldwide3 (China,

EU, India, Japan, Russia, UK, and the US) as money supply measures. These data are

sampled monthly, the highest frequency at which they are available, from January 1996

to October 2020, and Thomson Reuters provide them. Global money supply (GM2) is

constructed as the sum of national monetary aggregates as follows:

GM2t =
N∑
i=1

M2i,t, t = 1, . . . , T (8)

where M2i,t is the M2 money aggregate measure for country i at time t.

To assess the effect of an increase in money supply on commodity (energy and non-

energy together) prices, we use the Global Price Index of All Commodities from FRED

as a tracker of commodity prices (GCP). Data on short-term interest rates comes from

the Federal Reserves Bank of Dallas, particularly from the Database of Global Economic

Indicators. The global interest rate is calculated as the sum of the US policy rate and the

World (excluding the US) short-term interest rate weighted by their respective share of

global GDP as follows:

GIRt = (1− wUS
t )IRWorld

t + wUS
t IRUS

t , (9)

3The countries taken into account represent more than the 70% share of the world GDP according to
the last published World Bank data paper.
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where the weights wUS
t are constructed using the ratio between the quarterly data on

GDPUS and GDPWorld. The weights are assumed to be constant within the quarter, and

the data are freely available at International Monetary Fund.

Global industrial production (GIP) and the global consumer price index (GCPI) drive

the time-varying transition probabilities. Similar to the global interest rate variable, they

are constructed using data from the Global Economic Indicators of the Federal Reserve

Bank of Dallas by summing up their respective world and US variable weighted by the

share of the global GDP. All endogenous variables are taken in monthly quarter-over-

quarter (QoQ) percentage log differences. The vector of endogenous variables in Equation

(1) is y′
t = 100(∆ ln(GM2t),∆ ln(GIRt),∆ ln(GCPt)), while the transition probabilities

are driven by V′
t = (∆ ln(GIPt, )∆ ln(GCPIt)).

Finally, we employ data from the World Bank to study the effect of a positive innovation

in global money supply on prices of different sectors of the commodity markets. Specifically,

we use the data on energy, non-energy, precious metals, agriculture, raw materials, and

metals and minerals sectors stored in the “Pink Sheet” dataset of the World Bank.

5 Non-linearities in global money supply

In this section, we present the characteristics of the MS dynamic which drive global money

supply. First, we determine the number of regimes that drive global money supply by

comparing the goodness-of-fit of different model specifications. Secondly, by inspecting the

kernel density estimates of the posterior draws of the regime-dependent parameters, we

examine the features of the regime that the model detects. Then, we look at the smoothed

probabilities produced by the MS-VAR. Finally, we check the contribution of the global

economic indicators, i.e., global industrial production and consumer price index, to the

probabilities of switching between regimes.

5.1 Number of regimes

To find evidence of an underlying non-unique regime driving the money supply growth at

a global level, we estimate the VAR and the MS-VAR using different model specifications.
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Then, the in-sample goodness-of-fit of each model is evaluated according to the Deviance

Information Criterion (DIC), firstly introduced by Spiegelhalter et al. (2002). The DIC

reads as follows:

DIC
.
= 2

{
lnL

(
ϕ̄|y

)
− 2Eϕ|y [lnL (ϕ|y)]

}
, (10)

where Eϕ|y[lnL(ϕ|y)] is the expected value with respect to the joint posterior density,

L(ϕ|y) is the likelihood, and ϕ̄ = Eϕ|y(ϕ). Following Kaufmann and Frühwirth-Schnatter

(2002) the likelihood function in Equation (10) can be rewritten as:

L(ϕ|y) =
T∏
t=1

[
M∑
i=1

p
(
yt|ϕ, st = i,yt−1

)
P
(
st = i|ϕ,yt−1

)]
, (11)

where p (yt|ϕ, st = i,yt−1) is the distribution of yt conditioned to a single realization of

the hidden Markov chain, and P (st = i|ϕ,yt−1) is the filtered probability. Similar to other

information criteria, the DIC measures the balance between the goodness-of-fit and the

model complexity. To identify the best number of latent regimes driving global money sup-

ply, we estimate the VAR and the MS-VAR with up to sixteen lags and three regimes. For

each model under consideration, Table 4 shows the DIC with the corresponding confidence

intervals.

Confidence intervals are constructed following Ardia (2009) who proposes to resample

from the posterior estimates using the stationary block bootstrap of Politis and Romano

(1994). This methodology allows estimating the uncertainty of the DIC without recomput-

ing the model several times and, therefore, heavily reduces the computational burden. The

optimal length of the blocks is chosen by applying the Politis and White (2004) method-

ology to each parameter using the resulting maximum value as the optimal length. The

DIC reported in Table 4 supports the evidence of three regimes. Indeed, given the same

number of lags, the MS(3)-VAR always outperforms the other specifications.

Regarding the order of the autoregressive coefficients, the DIC suggests that sixteen

lags fit the data better but differences are not statistically significant. Therefore, to avoid

possible overfitting problems which may arise using the DIC (Ando, 2007) and to find a more

conclusive evidence on the number of lags, we also employ the predictive likelihood (PL),

see Frühwirth-Schnatter (2006). While the DIC allows testing the in-sample goodness-
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of-fit of each model, the PL serves to test the out-of-sample performance of the models.

Specifically, we evaluate the PL for the MS(3)-VAR, with p = 1, . . . , 16, and the one with

the highest PL delivers the best out-of-sample goodness of fit. The PL suggests that the

model with twelve lags has the best score in terms of predictive likelihood, see Table 2.

Therefore, we choose the MS(3)-VAR with twelve lags.

5.2 Empirical identification of the regimes

In this section, we assess the features of the different regimes providing evidence of the

regime identification. To do so, we inspect the kernel densities of the posterior draws of

the regime-dependent parameters.

Figure 3 reports the kernel density estimates of the posterior draws of the regime-

dependent intercepts. These posteriors encompass vital insights regarding the characteris-

tics of commodity prices and the global interest rate in the different money supply regimes.

The first moments of the posterior densities of the intercepts of the global money sup-

ply equation are increasing across regimes; each regime represents a different state of the

monetary cycle. The red shaded area refers to a period of low money growth; similarly,

the blue and the green shaded areas refer to moderate and excessive credit growth regimes,

respectively. As visible, both the supports of global money supply intercepts associated

with the second and third regimes are positive and statistically different from zero. This

result suggests that in both regimes global money supply tends to increase.

The regime-dependent intercepts of the commodity price equation are distinguishable

across regimes suggesting that the conditional mean of the commodity price growth is

substantially different depending on the phases of the monetary cycle. Specifically, the

support of the intercept is negative and statistically different from zero in the first regime,

namely, when money growth is slackening. This result points out that when the global

money supply slowdowns also commodity prices tend to decrease. In the second regime,

the commodity prices intercept is centered around zero, while it is positive and statistically

different from zero during periods of excessive credit growth.

The intercept of the global interest rate associated with a contractionary period of

credit growth is negative. This interest rate behavior is justified by the fact that in the
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same period, commodity prices drop, and monetary authorities loosen the monetary policy

to boost the economies. The intercepts’ supports overlap in the second and third regimes,

suggesting no clear difference across regimes.

Figure 4 shows the the other state-dependent parameter, i.e., the estimates of the

variance-covariance matrices. The residual volatilities of the global money supply, global

interest rate, and commodity prices are reported. As visible from the figure, there are

similarities in the volatility behavior across variables. The first regime, associated with a

slackening of money supply growth, is generally the most volatile period. In periods of

money supply busts, usually resulting from a financial crisis, volatility increases because

economic activity slowdowns and uncertainty grows. Conversely, the second and third

regimes are much less volatile. In particular, the second is the least volatile period for

money supply and nominal interest rate, while it is the third regime for commodity prices.

Namely, during periods of high credit growth, commodity prices increase firmly.

5.3 Regime probabilities

This section provides the smoothed probabilities produced by the MS-VAR model. By

inspecting these filtered probabilities, we can identify the periods associated with each

regime. In this respect, the upper panel in Figure 5 shows the filtered probabilities produced

by the model; particularly, the red shaded area, the blue one, and the green part refer to

the first, second, and third regime, respectively.

As visible, the first part of the sample is characterized by periods of booms and busts

in global money supply growth; conversely, from 2003 onwards, the global money supply

growth witnessed a steadily increasing interrupted by some periods of money contraction

during financial distresses. The rise in the level of money that began in 2003 is also

recognized as the beginning of the global liquidity cycle, see Kokeyne et al. (2010), which

accelerated from 2009 onwards when policymakers worldwide began to adopt liquidity

easing measures to respond to the financial crisis.

Looking at the upper panel of Figure 5, it is worth noting that before the Great Reces-

sion in 2009, it was a period of increasing money supply that accelerated just before the

crisis, and a regime of poor credit growth then followed it. A similar path can be observed
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in the early 2000s, namely, during the dot-com bubble, and during the period of the covid-

19 pandemic. As shown by Meller and Metiu (2017), Schularick and Taylor (2012), and

Gourinchas and Obstfeld (2012), recession periods are often preceded by money booms,

and they are generally accompanied by a drying up of money in circulation.

From 2010 to 2020, monetary aggregates have maintained sustained growth. This was

the period when western economies implemented unconventional monetary policies and

increased money in circulation. UE and US were the most active in quantitative easing,

injecting vast amounts of money into the system.

In the first two quarters of 2020, as the lockdowns kicked in as a response to the

covid-19 pandemic, is a higher probability of being in a regime of poor money growth. In

the aftermath of the recession, policymakers worldwide implement expansionary monetary

measures to support the economies, leading the world to an excessive money supply growth

regime.

Finally, in the lower panel of Figure 5, the commodity price index (black dotted line)

is shown, together with the filtered states (red line). In particular, the red line takes the

value 5 (-5) when it is evidence of being in the third (first) regime and a value equal to

zero when it is evidence of being in the second regime. As visible, commodities behave

accordingly to money supply growth regimes. In particular, they rise when money growth

accelerates and decrease accordingly. As shown in the figure, commodities prices crashed

after the dot-com bubble, the Great Financial crisis, and the covid-19 recession.

5.4 Time-varying transition probabilities

One important novelty of our approach when studying the relationship between money

and commodities is that the MS-VAR we propose allows transition probabilities to vary

over time. In particular, the dynamic of the transition probabilities is parametrized á la

Kaufmann (2015), and we assume that global indicators of economic activity drive the

matrix of transition probabilities. Namely, the probability of switching between global

credit regimes depends on global industrial production and the global consumer price index.

Table 3 shows the posterior means of the parameters associated with each variable, together

with the 90% confidence interval (in parenthesis).

15



First, it is worth highlighting that most coefficients are statistically significant, meaning

that both variables have a non-trivial effect on the probability of switching across regimes.

Moreover, global industrial production and the global consumer price index play an anal-

ogous role in the probability of switching between regimes.

The first row of Table 3 shows the coefficient associated with the global industrial

production and global consumer price index on the probability of remaining in a low money

supply growth regime or moving from the first regime to a regime of moderate global

money supply increase. As visible, an increase in the global consumer price index and

global industrial production increases the probability of remaining in the first regime. In

contrast, it reduces the likelihood of going to the second regime. Similarly, θj21 , j = 1, 2,

and θj22 , j = 1, 2, suggest that when global industrial production and consumer price index

boost, the probability of passing from the second regime to the first regime increases, while

it reduces the likelihood of remaining in the second one. When the global economy is in a

period of excessive credit growth, i.e., in the third regime, increasing the global consumer

price index and global industrial production leads to higher probabilities of returning to

the first or the second regime.

6 Structural form

To investigate how an unanticipated monetary shock propagates to commodity prices, and

vice-versa, the reduced model in Equation (1) needs to be transformed into a structural

form. Let us consider the following equation:

y′
tB0(st) = x

′
tB+(st) + u

′
t, (12)

where: xt = (1,yt−1, . . . ,yt−P ). The parameters A(st) = (a(st),A1, . . . ,Ap) are esti-

mated in the reduced form, A(st)
′ = B+(st)B0(st)

−1, εt = B0(st)
−1ut, and Σ(st) =

(B0(st)B0(st)
′)−1. By imposing sufficient conditions on (B0(st)B0(st)

′) the structural form

is identified. Nevertheless, the reduced form parameters do not uniquely identify structural

parameters and shocks across equations. Therefore it is impossible to distinguish regime

shift from one structural equation to another, see Sims and Zha (2006) for an extensive
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discussion.

We use a Cholesky ordering to identify the shocks. The commodity variable is assumed

to respond contemporaneously to a global money supply shock and a global interest rate

shock. In contrast, the global money supply responds to interest rates and commodity

prices with a one-month lag.

Figure 6 shows the cumulated impulses response functions (IRFs) of commodity prices

and interest rates to a one standard deviation increase of an unanticipated global money

supply shock in each regime. As seen in the chart, an exogenous increase in global money

supply leads to a temporary rise in commodity prices in each regime. In the first regime,

when monetary growth is low, commodity prices are likely to react more than in the other

regimes to an unanticipated shock in the money supply. In the long run, the shock is

absorbed within 14 months when money growth is in one of the two increasing regimes,

while it is absorbed in about twelve months when money growth is in the first regime.

Conversely, impulse responses of interest rate to a one standard deviation increase of an

unanticipated global money supply shock are not statistically significant in any regime. At

a global level, there is no clear evidence of what should be the effect of an increase in global

money supply on the global interest rate. Following the reasoning of Ratti and Vespignani

(2015), who find similar results, at the worldwide level, no unique central bank rules interest

rates.

Figure 7 showcases the cumulated responses of money growth and commodity prices

to a one standard deviation increase of an unanticipated global interest rate shock. As

visible, global monetary aggregates do not respond to the rise in the global interest rate.

Commodity prices positively react to an unexpected increase in nominal interest rates in

the first regime. In contrast, when the worldwide monetary aggregate increases, it does

not respond to commodity prices.

Figure 8 reports the cumulated impulse response functions of global money supply and

global interest rate to a one standard deviation increase of an unanticipated commodity

price shock. A one standard deviation increase in commodity price leads to a rise in nominal

interest rates worldwide. This is in line with previous research. When commodity prices

increase, monetary authority increases the nominal interest rate to offset the chance of an
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increase in inflation. The response of global money supply to a commodity prices shock is

unclear and not statistically significant.

7 The heterogenous effect of global money supply on

energy and non-energy commodity prices

In this section, we focus our attention on the responses of prices of different commodity

prices to unanticipated shocks in the global money supply. Particularly, we are interested

in studying the heterogenous effect of an increase in global money supply to energy and

non-energy commodity prices.

To do so, we use the same model as in Equation (4), but rather than the variable

∆ ln(GCPt), we employ the percentage log changes of index prices that refer to different

sectors of the commodity markets. Accordingly, we employ six indexes that track the

evolution of the following commodity prices: energy and non-energy, and moreover, we

inspect precious metals, agriculture, raw materials, and metals and minerals prices within

the non-energy commodity.

We report in Figure 9 the cumulated IRFs of these prices to a one standard deviation

increase of an unanticipated global money supply shock within each regime, while we show

the value of impulse response functions, together with respective confidence bandwidths,

in Appendix C.

Each row in Figure 9 represents one regime. Accordingly, in the upper panel are reported

median responses of individual commodity prices to a positive shock in global money supply

in the first regime, in the middle panel are reported responses in the second regime, and,

similarly, in the lower panel, responses in the third regime are showcased.

Consistently with previous results, all prices positively react to a one standard devia-

tion increase of an unanticipated global money supply shock. Figure 9 shows that after one

year, the impact of one standard deviation increase in the global money supply is associ-

ated with a 20.3% (11.3%) increase in energy (non-energy) commodity prices in the slow

money-supply regime. For the moderate money-supply regime, the impact of one standard

deviation increase in the global money supply is associated with a 15.6% (7.4%) increase
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in energy (non-energy) commodity prices. Finally, for the fast money-supply regime, the

impact of one standard deviation increase in the global money supply is associated with a

14.0% (6.0%) increase in energy (non-energy) commodity prices.

By further inspecting commodities in the non-energy sector, we can see that, after one

year, a one standard deviation increase of an unanticipated global money supply shock in

the slow-money supply regime leads to a rise of 6.1%, 8.7%, 8.7%, and 9.1% for prices of

precious metals, agriculture, raw materials, and metals and minerals, respectively. When

the one standard deviation increase of an unanticipated global money supply shock is in

the moderate money-supply regime, after one year, prices of precious metals, agriculture,

raw materials, and metals and minerals increase by 6.4%, 6.7%, 5.4%, and 9.1%. Finally,

in the fast money-supply regime, as a consequence of a one standard deviation increase

of an unanticipated global money supply shock, prices of precious metals, agriculture, raw

materials, and metals and minerals increase by 5.6%, 5.9%, 6.9%, and 7.8%.

When comparing the magnitude of the shocks, it is worth noting that the energy com-

modity prices tends to respond more pronouncedly to a positive rise in global money supply

compared to the non-energy commodity prices in each regime. Particularly, the response

magnitude is twice as large as the non-energy prices. As shown in Section 2, given that

energy commodities are a key input of non-energy commodities, an increase in money sup-

ply leads to heterogenous effects on energy and non-energy commodity prices. Indeed,

increasing money in circulation increases commodity demand, raising prices. However, the

higher costs faced by non-energy producers reduce the supply of such commodities. As a

result, the shift in supply, and its respective price increase, reduces demand toward a new

equilibrium with lower prices.

8 Conclusions

This paper examines the impact of unanticipated global money supply shocks on energy

and non-energy commodity prices using a Markov Switching framework with time-varying

transition probabilities with monthly data from January 1996 to October 2020. We assess

these unanticipated shocks in three different regimes to capture different stages of the global

monetary cycle, which can be interpreted as periods when the global money supply is: slow,
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moderate, and fast.

We present a plausible theoretical explanation of why the impact of unanticipated global

money supply shocks is larger for energy than for non-energy commodity prices. We ar-

gue that an increase in the global money supply for energy commodities results solely in

demand-pull inflation. However, for non-energy commodities, an increase in global money

supply results in demand-pull inflation and cost-push inflation since energy commodities

are a key input of all non-energy commodities.

Our results indicate that the impact of one standard deviation increase in the global

money supply is associated with a 20.3% (11.3%) increase in energy (non-energy) commod-

ity prices in the slow-money supply regime after 12 months. For the moderate money-supply

regime, the impact of one standard deviation increase in the global money supply is as-

sociated with a 15.6% (7.4%) increase in energy (non-energy) commodity prices. Finally,

for the fast money-supply regime, the impact of one standard deviation increase in the

global money supply is associated with a 14.0% (6.0%) increase in energy (non-energy)

commodity prices. These heterogeneous results across commodities are very informative

to central banks, international organizations, and macroeconomic forecasters, who aim to

understand the relationship between monetary cycles and commodity prices.
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Lag VAR MS(2)-VAR MS(3)-VAR

5% DIC 95% 5% DIC 95% 5% DIC 95%
2 4639.1 4639.5 4639.8 4371.3 4371.8 4372.5 4330.7 4338.3 4342.9
4 4416.7 4462.2 4462.8 4206.5 4207.2 4207.9 4158.3 4166.1 4178.7
8 4348.3 4348.8 4394.4 4097.0 4097.9 4098.8 4067.0 4070.5 4074.0
12 4275.2 4275.8 4276.4 4026.0 4027.1 4028.3 3982.1 3984.7 3987.7
14 4275.2 4275.8 4276.4 3988.7 3990.3 3991.7 3943.6 3945.5 3948.0
16 4275.2 4275.8 4276.4 3964.3 3966.3 3967.7 3924.3 3927.4 3929.3

Table 1: The Table reports the estimated DIC computed for the Vector Autoregressive Model (VAR), the
Markov Switching VAR with two states (MS(2)-VAR), and the Markov Switching VAR with three
states (MS(3)-VAR). The Table also reports the 5% and the 95% confidence interval constructed
using the block-bootstrap of Politis and Romano (1994). The DIC suggests twelve lags for the
VAR for all the models.

Model 2 4 8 12 14 16

MS(3)-VAR -2288.6 -2331.0 -2384.0 -2098.5 -2146.2 -2243.4

Table 2: The Table reports the estimated predictive likelihood (PL) computed for the Markov Switching
VAR with three states (MS(3)-VAR). The PL suggests twelve lags as the best specification.

Time-varying transition probabilities

∆Log(GIPt) ∆Log(GCPIt)

j=1 j=2 j=1 j=2

θj11
0.411

(0.115, 0.706)

-0.305

(-0.577, -0.034)
θj12

0.383

(0.094, 0.686)

-0.303

(-0.609, -0.002)

θj21
0.407

(0.107, 0.693)

-0.300

(-0.585, 0.016)
θj22

0.408

(0.112, 0.720)

-0.298

(-0.587, -0.003)

θj31
0.412

(0.107, 0.699)

0.407

(0.136, 0.694)
θj32

0.395

(0.111, 0.680)

0.390

(0.106, 0.659)

Table 3: Posterior mean and 90% credible interval (in parenthesis) for the coefficients of the variables global
industrial production (∆Log(GIPt)) and global consumer price index (∆Log(GCPIt)) which enter
in the dynamic of the transition probabilities.
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Figure 1: The figure plots the monthly growth rate of global M2 (GM2) with the scale on the left part (black
line) and the global commodity index (GCP) with the scale on the right part (grey dashed line),
from January 1996 to October 2020.

(a) Energy (b) Non-energy

Figure 2: The X-axis and Y-axis represent the measures of the quantity (Q) produced and prices (P ),
respectively. Curve S represents the supply and curve D represents the demand. Panel (a): It
shows that energy demand and prices increase in response to an increase in the global money
supply. Panel (b): It shows that non-energy demand and prices increase in response to an
increase in the global money supply. However, because energy commodities are input on the
production of non-energy commodities, the supply shifts to the left. Furthermore, this shift in
supply reduces demand towards the new equilibrium E′′′.
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Figure 3: Upper panel: aGM2
1 , aGM2

2 , and aGM2
3 are respectively kernel density estimates of the posterior

draws of the regime-dependent intercept of the global money supply equation in the first (red
shaded area with dashed line), second (blue shaded area with dotted line), and third (green shaded
area with continuous line) regimes. Middle panel: aGIR

1 , aGIR
2 , and aGIR

3 are respectively kernel
density estimates of the posterior draws of the regime-dependent intercept of the global interest
rate equation in the first (red shaded area with dashed line), second (blue shaded area with dotted
line), and third (green shaded area with continuous line) regimes. Lower panel: aGCP

1 , aGCP
2 ,

and aGCP
3 are respectively kernel density estimates of the posterior draws of the regime-dependent

intercept of the commodity price equation in the first (red shaded area with dashed line), second
(blue shaded area with dotted line), and third (green shaded area with continuous line) regimes.
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Figure 4: Upper panel: σGM2
1 , σGM2

2 , and σGM2
3 are respectively kernel density estimates of the posterior

draws of the regime-dependent standard deviation of global money supply in the first (red shaded
area with dashed line), second (blue shaded area with dotted line), and third (green shaded area
with continuous line) regimes. Middle panel: σGIR

1 , σGIR
2 , and σGIR

3 are respectively kernel
density estimates of the posterior draws of the regime-dependent standard deviation of global
interest rate in the first (red shaded area with dashed line), second (blue shaded area with dotted
line), and third (green shaded area with continuous line) regimes. Lower panel: σGCP

1 , σGCP
2 ,

and σGCP
3 are respectively kernel density estimates of the posterior draws of the regime-dependent

standard deviation of commodity price in the first (red shaded area with dashed line), second (blue
shaded area with dotted line), and third (green shaded area with continuous line) regimes.
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Figure 5: Upper panel: The red shaded area with dashed line refers to the filtered probability of regime 1,
the blue shaded area with dotted line is the filtered probability of regime 2, and the green shaded
area with continuous line is the filtered probability of regime 3. Lower panel: It shows the growth
of commodity prices (black dotted line) and the filtered state (red line). When the red line is
0 indicates evidence of the second regime, when it is equal to -5 indicates evidence of the first
regime, and when it is 5, it indicates evidence of the third regime.
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Figure 6: The first and the second rows represent the impulse response functions (IRFs) of commodity
prices (GCP) and global interest rates (GIR) to global money supply (GM2) shock, respectively.
Each column reports the IRFs in a specific regime. Particularly, on the left are the IRFs in the
first regime, on the right are the IRFs in the third regime, and in the middle are the IRFs in the
second regime. The solid lines are the median responses, whereas the shaded areas correspond to
68% credible intervals.
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Figure 7: The first and the second rows represent the impulse response functions (IRFs) of global money
supply (GM2) and commodity prices (GCP) to a global interest rate (GIR) shock, respectively.
Each column reports the IRFs in a specific regime. Particularly, on the left are the IRFs in the
first regime, on the right are the IRFs in the third regime, and in the middle are the IRFs in the
second regime. The solid lines are the median responses, whereas the shaded areas correspond to
68% credible intervals.
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Figure 8: The first and the second rows represent the impulse response functions (IRFs) of global money
supply (GM2) and global interest rate (GIR) to a commodity price (GCP) shock, respectively.
Each column reports the IRFs in a specific regime. Particularly, on the left are the IRFs in the
first regime, on the right are the IRFs in the third regime, and in the middle are the IRFs in the
second regime. The solid lines are the median responses, whereas the shaded areas correspond to
68% credible intervals.

32



2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Energy Non-energy Precious metals Agriculture Raw materials Metals and minerals

Figure 9: Upper panel: Cumulated impulse response functions of energy, non-energy, precious metals, agri-
culture, raw materials, and metals and minerals to a global money supply shock in the first
regime. Middle panel: Cumulated impulse response functions of energy, non-energy, precious
metals, agriculture, raw materials, and metals and minerals to a global money supply shock in
the second regime. Lower panel: Cumulated impulse response functions of energy, non-energy,
precious metals, agriculture, raw materials, and metals and minerals to a global money supply
shock in the third regime.
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APPENDIX

A Priors

This Appendix shows the priors that we use to estimate the MS-VAR model.

Prior specification for regime-independent parameters: The prior distribution of

regime-independent autoregressive coefficients, γ0, is:

γ0 ∼ NK2P (γ0
,Σ0), (13)

where γ
0
= 0K2P , a K2P × 1 null vector, and Σ0 = 10IK2P .

Prior specification for the regime-dependent intercepts: The prior distribution of

the MS intercepts, γi, is:

γi ∼ NK(γi
,Σi), for i = 1, . . . ,M, (14)

where γ
i
= 0K , a K × 1 null vector, and Σi = 10IK .

Prior specification for the regime dependent variance-covariance matrices: The

prior chosen for the inverse of the regime-specific variance-covariance matrices is indepen-

dent Wishart (W) priors, which read as:

Σ−1
i ∼ WK(Υi, νi) for i = 1, . . . ,M (15)

where νi = 5 is the degrees of freedom parameter and Υi = 10IK is the scale matrix.

Prior specification for the parameters of the time-varying transition probabil-

ities matrix: In order to void overfitting, following Billio et al. (2016), we use a hier-

archical prior specification for the parameters of the Logit specification in time-varying

transition probabilities. Specifically, for the parameters which drive the j-th row in the

34



matrix in Equation (2), we assume:

θij ∼ NN+1 (ψ,Ω) i = 1, . . . ,M − 1

ψ ∼ NN+1(ψ,Ω)
(16)

with ψ = 0N , a N × 1 null vector, Ω = IN+1 and Ω = 10IN+1.

B Posteriors

Posterior of the regime-independent parameters: The posterior distribution of the

regime-independent parameter, γ0, is normal with density function:

f
(
γ0 | y,Ξ,γ,Σ,γ0

)
∝

∝ exp

{
−1

2
γ ′
0

(
T∑
t=1

X′
0tΣ

−1
t X0t +Σ−1

0

)
γ0 + γ0

(
T∑
t=1

X ′
0tΣ

−1
t y0t +Σ−1

0 γ0

)}
∝ NK2P

(
γ̄0, Σ̄0

)
,

(17)

where y0t = yt −
∑M

i=1 ξitXitγi, γ̄0 = Σ̄0

(
Σ−1

0 γ0
+
∑T

t=1X
′
0tΣ

−1
t X0t

)
, and Σ̄−1

0 = (Σ−1
0 +∑T

t=1X
′
0tΣ

−1
t X0t)

Posterior of the regime dependent intercepts: The conditional posterior distribu-

tions of γi, with i = 1, . . . ,M , are normal with density functions:

f
(
γi | y,Ξ,γ0,γ(−i),Σ,γ

i

)
∝

∝ exp

{
−1

2
γ ′
i

(∑
t∈Ti

X′
itΣ

−1
t Xit +Σ−1

i

)
γi + γ

′
i

(∑
t∈Ti

X′
itΣ

−1
t yit +Σ−1

i γi

)}
∝ NK

(
γ̄i, Σ̄i

)
(18)

with γi = Σ̄−1
i

(
Σ−1

i γi
+
∑

t∈Ti X
′
itΣ

−1
t Xit

)
and Σ̄−1

i =
(
Σ−1

i +
∑

t∈Ti X
′
itΣ

−1
t Xit

)
where

Ti = {t | ξit = 1, t = 1, . . . , T} and yit = yt −X0tγ0.
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Posterior of the regime dependent variance-covariance matrices: The conditional

posterior distribution of the regime-dependent variance-covariance matrix, Σi, with i =

1, . . . ,M , are Wishart density:

f(Σ−1
i | y,Ξ,γ0,γi,Σ(−i),Υi) ∝

∝| Σ−1
i |

νi+Ti−K−1

2 exp

{
−1

2
tr

((
Υ−1

i +
∑
t∈Ti

uitu
′
it

)
Σ−1

i

)}
∝ WK(ν̄i, Ῡi)

(19)

where Ti =
∑T

t=1 Iξit=1, uit = yt −X0tγ0 −Xitγi, ν̄i = νi + Ti, and Ῡi = Υi +
∑

t∈Ti uitu
′
it.

Posterior of the parameters of the time-varying transition probabilities matrix:

The full conditional distribution of the parameters in the j-th row of the transition matrix

is:

f
(
θj1, . . . ,θj(M−1)|y,Ξ,γi

)
∝

T∏
t=1

M−1∏
i=1

(
G
(
Vt,θ

ki
))ξitξjt−1

, (20)

and we apply a Metropolis-Hastings.
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C IRFs of commodity sectors

First regime

Horizon 4 8 12 16

LB Median UB LB Median UB LB Median UB LB Median UB
Energy -0.8 5.5 11.9 2.6 13.7 25.1 4.5 20.3 36.4 -2.5 18.0 38.7

Non-Energy 3.4 6.7 10.1 6.9 12.8 19.1 2.5 11.3 20.3 -2.1 9.5 21.2
Precious metals 4.6 7.3 10.1 2.6 7.9 13.6 -2.1 6.1 14.5 -5.8 5.2 16.3

Agriculture 4.0 6.4 9.1 6.1 10.6 15.6 2.0 8.7 15.9 -1.5 7.5 16.8
Raw Materials 3.3 5.1 7.0 5.1 8.4 12.2 3.5 8.7 14.2 1.3 8.2 15.5

Metals and minerals 1.4 5.2 9.1 4.4 12.0 19.9 -2.3 9.1 21.0 -8.8 6.3 21.7

Second regime

Horizon 4 8 12 16

LB Median UB LB Median UB LB Median UB LB Median UB
Energy 3.2 6.2 9.4 5.3 11.3 17.5 6.7 15.6 24.7 2.3 14.1 26.0

Non-Energy 3.6 4.7 5.9 5.8 8.0 10.3 4.0 7.4 10.9 2.2 6.9 11.6
Precious metals 4.4 6.6 8.4 3.6 7.4 10.7 1.2 6.4 11.3 -0.4 6.3 12.8

Agriculture 3.8 4.9 6.1 5.4 7.7 10.0 3.2 6.7 10.2 1.8 6.4 11.1
Raw Materials 2.1 3.2 4.3 3.2 5.3 7.4 2.3 5.4 8.6 1.0 5.1 9.3

Metals and minerals 3.6 5.6 7.8 6.4 10.5 14.8 2.8 9.1 15.7 -5.7 7.4 16.0

Third regime

Horizon 4 8 12 16

LB Median UB LB Median UB LB Median UB LB Median UB
Energy -0.7 2.8 6.7 2.0 9.1 17.2 3.5 14.0 25.8 -1.6 12.4 27.7

Non-Energy 2.3 3.5 4.7 4.4 6.8 9.6 2.2 6.0 9.9 -0.2 4.9 10.2
Precious metals 2.9 5.7 8.9 2.0 6.7 11.9 -1.3 5.6 12.9 -3.9 5.1 14.4

Agriculture 1.2 3.0 5.3 3.0 6.5 10.7 0.8 5.9 11.9 -1.5 5.2 13.0
Raw Materials 1.6 4.2 7.0 2.8 6.7 11.0 1.7 6.9 12.5 0.1 6.6 13.6

Metals and minerals 1.5 4.0 6.7 4.3 9.6 15.5 -0.7 7.8 16.6 -5.9 5.5 16.9

Table 4: This table shows values of median impulse response functions, together with respective 68% con-
fidence bandwidths in each regime; LB stands for the lower bound, while UB stands for the upper
bound.

37


