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A B S T R A C T   

The livestock industry accounts for a considerable proportion of agricultural greenhouse gas emissions, and in 
response, the Australian red meat industry has committed to an aspirational target of net-zero emissions by 2030. 
Increasing soil carbon storage in grazing lands has been identified as one method to help achieve this, while also 
potentially improving production and provision of other ecosystem services. This review examined the effects of 
grazing management on soil carbon and factors that drive soil carbon sequestration in Australia. A systematic 
literature search and meta-analysis was used to compare effects of stocking intensity (stocking rate or utilisation) 
and stocking method (i.e, continuous, rotational or seasonal grazing systems) on soil organic carbon, pasture 
herbage mass, plant growth and ground cover. Impacts on below ground biomass, soil nitrogen and soil structure 
are also discussed. 

Overall, no significant impact of stocking intensity or method on soil carbon sequestration in Australia was 
found, although lower stocking intensity and incorporating periods of rest into grazing systems (rotational 
grazing) had positive effects on herbage mass and ground cover compared with higher stocking intensity or 
continuous grazing. Minimal impact of grazing management on pasture growth rate and below-ground biomass 
has been reported in Australia. However, these factors improved with grazing intensity or rotational grazing in 
some circumstances. 

While there is a lack of evidence in Australia that grazing management directly increases soil carbon, this 
meta-analysis indicated that grazing management practices have potential to benefit the drivers of soil carbon 
sequestration by increasing above and below-ground plant production, maintaining a higher residual biomass, 
and promoting productive perennial pasture species. Specific recommendations for future research and man-
agement are provided in the paper.   

1. Introduction 

Livestock production occurs on approximately 30% of global land 

and contributes to a significant proportion of agricultural output from 
developed (40%) and developing (20%) countries (Steinfeld et al., 2006; 
FAO, 2018). Globally, livestock contribute to around 34% of the food 
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protein supply and directly support the livelihoods of 1.3 B people (FAO, 
2018). However, population growth, changing diets, higher incomes, 
climate change and urbanisation are increasing the demand for livestock 
products and pressure on agricultural landscapes and biodiversity (The 
World Bank, 2009; Wellesley et al., 2015; Harrison et al., 2021). 

In the absence of land use change, the livestock sector is agriculture’s 
largest producer of greenhouse gas (GHG) emissions (Smith et al., 2014; 
Harrison et al., 2021). The livestock sector emits an estimated 7.1 GT of 
carbon dioxide equivalents (CO2e) each year (14.5% of total 
human-induced GHG emissions) (Gerber et al., 2013). In Australia, 71% 
of agricultural emissions are from methane emitted from livestock 
(DCCEEW, 2020). In response, the Australian red meat industry has 
committed to an aspirational target of net-zero emissions by 2030 
(CN30, MLA, 2021). Achieving CN30 requires, in part, the identification 
and implementation of grazing management approaches that reduce 
emissions and/or sequester carbon in soil and vegetation, while 
demonstrating environmental stewardship, increasing profitability and 
maintaining social licence to operate (Harrison et al., 2021; Henry et al., 
2023). 

Carbon stored in the top metre of soil represents the largest store of 
terrestrial organic carbon and is around three times that stored in 
vegetation and two times that in the atmosphere (Sándor et al. 2020; 
Farina et al. 2021). Agricultural soils are an important stock of carbon, 
and in Australia 12.76 Gt of organic carbon is estimated to be stored in 
the 0–30 cm soil layer (Viscarra Rossel et al., 2014). In effect, small 
changes in the amount of carbon stored in soil could have a significant 
impact on atmospheric carbon levels (Scharlemann et al., 2014; Viscarra 
Rossel et al., 2014). 

Pasture management (pasture species, soil nutrition and grazing 
management) influences above and below-ground contributions of 

organic matter (OM) to soil, and hence soil organic carbon (SOC) 
accumulation (Jastrow et al., 2007). The potential benefits of grazing 
management on SOC accumulation in pasture systems are associated 
with promoting deep-rooted perennial plants (Fisher et al., 1994), 
increasing plant and root growth (Johnston, 1961), promoting nitrogen 
(N) input from legumes, encouraging root turnover (Chen et al., 2015) 
and litter return to the soil surface (Fig. 1). In addition, reducing soil 
disturbance, compaction and erosion (by maintaining groundcover) can 
increase the retention of OM in soils (Sanjari et al., 2008, 2009; Palacio 
et al., 2014; Galdino et al., 2016). Understanding relationships between 
grazing management and the key drivers of SOC sequestration is 
important to increase sequestration and to avoid further losses of SOC in 
grazing lands (Derner and Schuman, 2007). This is particularly impor-
tant in Australia, where more than half of the land mass is subject to 
livestock grazing and from which livestock commodities make a sig-
nificant contribution to the agricultural economy (Snow et al., 2021). 

International reviews have reported negative impacts of moderate to 
high stocking intensity on SOC stocks, but not at light stocking in-
tensities (Byrnes et al., 2018; Jiang et al., 2020) when compared to 
grazing exclusion. Effects of stocking method (frequency, timing or 
duration of grazing) have received less attention. However, a global 
meta-analysis found an increase in SOC stocks under rotational grazing 
compared with continuous grazing (Byrnes et al., 2018). Similarly, a 
review by Conant et al., 2017) reported increased SOC with ‘improved 
grazing’, along with other management practices including improving 
soil fertility, irrigation, and sowing legume and grass species. The 
category of improved grazing in this study was broad, including 
lowering stocking rates, various forms of rotational or seasonal grazing 
or removing livestock entirely. Overseas, adaptive multi-paddock (AMP) 
grazing has been shown to increase soil carbon (Stanley et al., 2018; 

Fig. 1. Key drivers and processes of soil organic carbon accumulation in grazing systems. 1. Intensity, frequency, timing and duration of stocking impacts above- 
ground biomass, plant growth rate and species composition (incl. Legumes, C3/C4 grasses, annual/perennial), as well as dung and urine (carbon and nitrogen) 
contribution to soil and ground cover. 2. Grazing changes carbon allocation to roots and root growth rate 3. Management of grazing impacts soil structure, infil-
tration and potential erodibility. Dung, urine, root carbon allocation and legume composition affect soil nitrogen. 4. Nitrogen increases above-ground plant and root 
production, and legumes and their symbionts fix atmospheric N. Soil structure impacts above and below ground plant production. 5. Soil compaction and loss of 
ground cover reduces soil porosity and infiltration and increases soil temperature fluctuations, leading to changes in microbial activity and communities. N 
availability impacts stability of OM in soil and soil respiration. 6. Microbes and microbial detritus are a component of soil organic matter with various stability. 7. 
Root residues and exudates are significant drivers of microbial activity, and contribute directly to soil OM. 

S.E. McDonald et al.                                                                                                                                                                                                                           



Journal of Environmental Management 347 (2023) 119146

3

Mosier et al., 2021; Apfelbaum et al., 2022). These findings indicate 
potential for grazing management to increase SOC in Australia. 

While there has been a significant focus on international reviews 
(Conant et al., 2017; Abdalla et al., 2018; Byrnes et al., 2018; di Virgilio 
et al., 2019; Jiang et al., 2020), there has not been a focus on inter-
preting how the processes associated with SOC accumulation are 
controlled for livestock production systems under Australian conditions. 
This is important as rainfall patterns in Australia, particularly in the 
tropical north, are amongst the most variable in the world (Dey et al., 
2021), and fertility of Australian soils is relatively low (Charley and 
Cowling, 1968; Eldridge et al., 2018). Sequestering SOC under condi-
tions of low soil fertility, high temperatures and highly variable rainfall 
patterns may not have the same potential as environments with more 
reliable rainfall patterns (Eldridge et al., 2018; Meyer et al., 2018). This 
review aimed to examine the effect of grazing management (stocking 
intensity and stocking method - frequency, timing, duration) on SOC and 
key drivers of SOC in Australian pasture and grazing systems. 

2. Methods 

2.1. Literature search 

A systematic literature search was conducted using the Web of Sci-
ence platform to retrieve Australian studies that examined the impact of 
grazing management (e.g., stocking intensity, stocking method) using 
domesticated livestock on SOC, herbage mass (total standing herbage 
mass at time of sampling), plant growth rate (change in herbage mass 
over specific period), below-ground biomass and total ground cover. 
Additional articles were identified by searching reference lists of pre-
vious relevant reviews, articles referenced in the returned articles, and 
personal libraries. See Appendix Afor detail on methodology of the 
literature search. In total, 178 articles were retained for inclusion in the 
meta-analysis. 

2.2. Data preparation 

For each paper, information on grazing treatment (stocking intensity 
and method) including the mean, sample size and standard deviation for 
each treatment and control was extracted, along with co-variate data 
including climate, vegetation, rest and grazing time, and management 
cues. In studies comparing stocking intensity, grazing treatments were 
classified as low, medium or high based on the study information and 
authors’ assessment. The lower stocking intensity treatment was 
considered the control. In studies comparing stocking method, grazing 
treatments were classified as either continuously grazed, low (stock 
rotated through <5 paddocks), moderate (5–10 paddocks) or high (>10 
paddocks) intensity rotational grazing, or seasonal (where stock grazed 
or were removed from an area at a specific time in the year). The 
continuous grazing treatment was considered the control for these 
contrasts. 

2.3. Statistical analysis 

Effect sizes were calculated using the natural logarithm (ln) of the 
response ratio (RR), representing the proportional change between 
treatment means (Hedges et al., 1999). 

lnRR= ln
(

XT

XC

)

(1)  

Where XT represents the mean of the treatment and XC represents the 
mean of the control. 

A significant proportion of studies (up to 85%) did not provide a 
measure of error to enable the calculation or imputation of standard 
deviation, therefore variance was calculated using replicate number 
assuming a coefficient of variation of 1. 

vi =
1
nT

+
1

nC
(2)  

Where nT represents the number of replicates (including study sites and 
years) of the treatment and nC represents the number of replicates of the 
control. 

Dependence of sampling errors through shared controls was 
considered by dividing the number of replicates for the control by the 
number of contrasts within an article that share a control (Higgins et al., 
2019; Bishop and Nakagawa, 2021). Dependence of sampling errors 
through multiple effect sizes per treatment was calculated with a vari-
ance co-variance matrix (Bishop and Nakagawa, 2021) using the 
make_VCV_matrix function in MetaAid package (Noble, 2019) in R (R 
Core Team, 2022). 

Random and mixed-effects models were used to identify significance 
of treatment effects and other explanatory variables. Comparisons of 
stocking intensity and method were analysed separately. Response ra-
tios were analysed using the rma. mv function in metafor (Viechtbauer 
and Viechtbauer, 2015). A unique identifier for each study (where one 
study was published across multiple papers), reference, grazing contrast, 
year within study, and depth of sampling (soil carbon only) were 
initially included as random effects, and the optimum null model 
(random effects only) to determine overall effects of stocking intensity 
or method was determined by comparing AICs for each variable. 
Moderator variables including comparison type (low v moderate, low v 
high or moderate v high stocking intensity), rainfall, climate and vege-
tation were tested separately in all models and compared with the null 
(random effect) model. In addition, management cues (based on pasture 
availability/phase or time) and number of rest days per year were tested 
in models comparing stocking method. Due to the low number of 
studies, and lack of information presented in some studies, results of 
models with management cues and vegetation type are not presented. 
Model selection was performed using the maximum likelihood (ML) 
estimator, and restricted maximum likelihood (REML) was used to 
generate values reported in this paper. Significance of null models and of 
moderator variables were determined using the P values (<0.05), and 
the lnRR estimates and confidence intervals of 95% were converted into 
the percentage change for interpretation. 

Sensitivity analysis was performed using sample number (which 
included the number of cores, quadrats or animals measured) instead of 
replicate number to calculate the variance using an unweighted analysis. 
Full results of all additional models are provided inTables A.3 – A.7. 

Publication bias was tested using funnel plots and Egger’s regression 
test (Egger et al., 1997), and Skewness (Lin and Chu, 2020). Results of 
this test are summarised in Table A.8. The ggplot2 package (Wickham 
et al., 2016) was used to visualise results of the overall meta-analyses, 
and orchaRd (Nakagawa et al., 2021) used to create orchard plots of 
different grazing treatment comparisons. On these graphs, values to the 
left of 0 indicate greater values under the lower stocking intensity 
treatment or continuously grazed treatment. 

3. Impacts of grazing management on soil organic carbon 

Of the studies that examined the effect of grazing management on 
SOC, 13 studies reported the effect of stocking intensity and 19 
compared stocking strategies (Table 1). Studies were located across 
Australia in multiple climate zones and soil types (Fig. 2). The meta- 
analysis of these Australian studies found no significant effect of stock-
ing intensity (− 1.3%, CI -11.2 – 9.7%) or method(4.4%, CI -6.8 – 17.0) 
on SOC (Fig. 3), and there was no significant interaction with rainfall, 
climatic region, or rest time (P > 0.05, see Table A.3 for detail on model 
results). 

Overall, most studies reported no significant difference in SOC be-
tween grazing management treatments. Of the studies that reported an 
effect of stocking intensity, most reported negative effects of increasing 
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Table 1 
Summary of Australian studies examining impact of grazing management on soil carbon.  

Reference Location Average Annual Rainfall 
(mm) 

Grazing treatment/s Soil Carbon* Depth 
(cm) 

Length of treatment 
(years) 

Alemseged et al. (2011) Cobar Peneplain, NSW <500 Light/rotational grazing 0.81% 0–10 >10    
Set stocking 0.71%   

Allen et al. (2013) Rangelands, QLD 256–1138 Rotational grazing 0.84% 0–30 10     
29.04 t/ha      

Cell Grazing 1.02%       
34.72 t/ha      

Continuous grazing 0.56%       
17.86 t/ha   

Badgery et al. (2014) Central West Slopes and Plains, NSW 300–650 Increasing intensity of rotational grazing 28.7–40.4 t/ha 0–30 Various 

Bray et al. (2014) Northern QLD (Charters Tower Region) 640 Moderate stocking rate 20.17 t/ha † 0–30 16    
Heavy stocking rate 18.85 t/ha †

Cattle and Southorn 
(2010) 

Central Tablelands, NSW 919 High intensity -short duration grazing 2.90% 0–10 3    

Set stocking 2.80%   

Chan et al. (2010) Central & Southern NSW, North-East VIC 600–800 Continuous/loose rotational grazing 38.5 t/ha 0–30 >10    
Rotational/cell grazing 39.2 t/ha   

Cowie et al. (2013) Northern Tablelands, NSW 792 Rotational grazing 46.8 t/ha 0–30 >5    
Continuous grazing 40.1 t/ha  >10 

Eldridge et al. (2015) Cobar Peneplain, NSW 250 Low grazing intensity (shrub) 1.04% 0–5 1+
Moderate grazing intensity (shrub) 0.86%      
High grazing intensity (shrub) 0.89%      
Low grazing intensity (open) 0.92%      
Moderate grazing intensity (open) 0.93%      
High grazing intensity (open) 0.77%   

Holt (1997) Northern QLD (Charters Tower Region) 650 Heavy grazing (Cardigan) 0.70% 0–7.5 6    
Light grazing (Cardigan) 0.70%     

535 Light grazing (Hillgrove) 1.90% 0–7.5 8    
Heavy grazing (Hillgrove) 1.80%   

Limpert et al. (2021) Wimmera Region, VIC 400–600 Continuous grazing 3.80% 0–10 1    
Short duration (crash) grazing 3.50%   

Lodge and King (2006) North-west slopes, NSW (Barraba) 694 Continuous low intensity 14.75 mg/g of soil 0–5 4    
Continuous high intensity 14.25 mg/g of soil      
2 paddock rotation low intensity 15.06 mg/g of soil      
4 paddock rotation low intensity 17.16 mg/g of soil   

(continued on next page) 
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Table 1 (continued ) 

Reference Location Average Annual Rainfall 
(mm) 

Grazing treatment/s Soil Carbon* Depth 
(cm) 

Length of treatment 
(years)  

North-west slopes, NSW (Manilla) 654 Continuous low intensity 18.34 mg/g of soil 0–5 4    
Continuous high intensity 18.22 mg/g of soil      
2 paddock rotation low intensity 16.91 mg/g of soil      
4 paddock rotation low intensity 19.74 mg/g of soil    

North-west slopes, NSW (Nundle) 834 Continuous low intensity 28.42 mg/g of soil 0–5 4    
Continuous high intensity 29.56 mg/g of soil      
Spring/Autumn rest high intensity 29.9 mg/g of soil   

Lodge et al. (2003a) North-West Slopes, NSW (Barraba) 694 Continuous low intensity 0.396 mg/g of soil.year ‡ 0–5 0–4     
3.56 mg/g of soil.year δ      

Continuous high intensity 0.372 mg/g of soil.year ‡
3.57 mg/g of soil.year δ      

2 paddock rotation low intensity 0.440 mg/g of soil.year ‡
3.68 mg/g of soil.year δ      

4 paddock rotation low intensity 0.502 mg/g of soil.year ‡
4.02 mg/g of soil.year δ   

Lodge et al. (2003b) North-West Slopes, NSW (Manilla) 654 Continuous low intensity 0.483 mg/g of soil.year ‡ 0–5 0–4     
4.09 mg/g of soil.year δ      

Continuous high intensity 0.476 mg/g of soil.year ‡
3.89 mg/g of soil.year δ      

2 paddock rotation low intensity 0.511 mg/g of soil.year ‡
4.17 mg/g of soil.year δ      

4 paddock rotation low intensity 0.583 mg/g of soil.year ‡
4.62 mg/g of soil.year δ   

Lodge et al. (2006) North-West Slopes, NSW 654 Light grazing 1998 (pre-switch) 761 μg/g 0–5 8    
Strategic heavy grazing 1998 (pre switch) 680 μg/g   

McDonald et al. (2018) Western NSW (Bourke Region) 307 Moderate intensity rotation (patch) 0.53% 0–5 5    
Set-stocking/continuous (patch) 0.51%      
Moderate intensity rotation (interpatch) 0.34%      
Set-stocking/continuous (interpatch) 0.35%   

Northup et al. (1999) Northern QLD (Charters Tower Region) 527 Light grazing (Initially excellent condition) 1.04% 0–7.5 4    
Heavy grazing (Initially excellent 
condition) 

0.83%   

Orgill et al. (2017) Western NSW (Brewarrina region) 392 Continuous grazing (claypan) 13.54 t/ha 0–30 10    
Rotational grazing (claypan) 13.65 t/ha      
Continuous grazing (no claypan) 13.97 t/ha      
Rotational grazing (no claypan) 12.85 t/ha   

Orgill et al. (2018) South eastern NSW (Berridale region) 582 Tactical (set-stock with biannual rest) 33.7 t/ha 0–40** 4 

(continued on next page) 
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Table 1 (continued ) 

Reference Location Average Annual Rainfall 
(mm) 

Grazing treatment/s Soil Carbon* Depth 
(cm) 

Length of treatment 
(years)    

Cell Grazing 38.4 t/ha   

Orgill et al. (2014) South-eastern NSW (Boorowa Region) 610 Continuous grazing on introduced pasture 57.7 t/ha 0–70** 15    
Rotational grazing on introduced pasture 48 t/ha      
Continuous grazing on native pasture 53.6 t/ha      
Rotational grazing on native pasture 49.4 t/ha   

Pringle et al. (2014) North-Western QLD (Julia Creek region) 429 10% pasture utilisation 21.78 t/ha 0–50 16    
20% pasture utilisation 21.65 t/ha      
30% pasture utilisation 21.43 t/ha      
50% pasture utilisation 21.09 t/ha      
80% pasture utilisation 20.58 t/ha   

Pringle et al. (2011) Northern QLD (Charters Tower Region) 617 Light stocking rate Carbon data not presented for grazing 
treatments 

0–50 12    

Heavy stocking rate    

Proffitt et al. (1995) Eastern wheatbelt, WA (Merredin region) 307 Low stocking rate (traditional tillage) 0.92% 0–5 1    
High stocking rate (traditional tillage) 0.91%      
Low stocking rate (minimum 
tillage + gypsum) 

1.16%      

High stocking rate (minimum 
tillage + gypsum) 

1.12%   

Sanderman et al. (2015) Upper and Mid-North region, SA 440 Continuous grazing 26.3 t/ha 0–10 >7    
Rotational grazing 24.4 t/ha   

Sanjari et al. (2008) South Eastern QLD (Stanthorpe region) 645 Continuous grazing 26.63 t/ha 0–10 5    
Time-controlled grazing 27.99 t/ha   

Sato et al. (2019) Southern NSW  Continuous grazing Carbon data not presented for grazing 
treatments 

0–5 >10    

Long-conversion rotational grazing   10    
Short-conversion rotational grazing   5    
Strategic grazing   2 

Schatz et al. (2020) Northern NT (Douglas-Daly Region) 1209 Continuous, variable stocking rates in dry 
season 

16.01 t/ha 0–30 9    

Continuous, consistent stocking rates in dry 
season 

16.81 t/ha      

Continuous, variable stocking rates in wet 
season 

16.38 t/ha      

Continuous, consistent stocking rates in wet 
season 

16.87 t/ha   

(continued on next page) 
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Table 1 (continued ) 

Reference Location Average Annual Rainfall 
(mm) 

Grazing treatment/s Soil Carbon* Depth 
(cm) 

Length of treatment 
(years)    

Intensive rotational grazing during the dry 
season 

16.92 t/ha      

Intensive rotational grazing during the wet 
season 

17.35 t/ha   

Segoli et al. (2015) Northern QLD (Charters Towers region) 636 Moderate stocking rate 0.85% 0–10 16    
High stocking rate 0.88%   

Valentine et al. (2009) South-east SA (Flaxley region) 767 2.5 cows/ha (dryland) 3.90% 0–10 4    
2.9 cows/ha (dryland) 3.70%      
3.3 cows/ha (dryland) 4.30%      
3.6 cows/ha (dryland) 4.00%      
4.1 cows/ha (dryland) 3.83%      
4.1 cows/ha (irrigated) 4.53%      
5.2 cows/ha (irrigated) 4.42%      
6.3 cows/ha (irrigated) 4.46%      
7.4 cows/ha (irrigated) 4.55%   

Waters et al. (2017) Western NSW (Brewarrina region) 392 Continuous grazing (claypan) 0.36% 0–30*** >8    
Rotational grazing (claypan) 0.39%      
Continuous grazing (no claypan) 0.41%      
Rotational grazing (no claypan) 0.37%   

Young et al. (2016) Southern New England Tablelands, NSW 
(Walcha region) 

900–1200 Low stocking rates 130 t/ha 0–50 HSR >20    

High stocking rates 128 t/ha   

* Where multiple years are presented in study, the data from the last year are presented here. SOC concentration was either measured by dry combustion or wet chemistry (Heanes or Walkley and Black) depending on the 
study, and to our knowledge the figure reported relates to the organic carbon of the <2 mm soil. 
** Total of all depths. 
*** Mean of different depths. 
† Carbon value reported in t CO2e/1000 ha converted into t/ha for comparability here using the formula (t CO2e/1000ha x ((1/3.6667)/1000)). 
‡ microbial carbon. 
δ labile carbon. 
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stocking intensity on SOC (Lodge et al., 2006; Allen et al., 2013; Bray 
et al., 2014). Of the studies that reported a difference in SOC with 
stocking method, Lodge et al. (2003a, 2003b) reported that continu-
ously grazed treatments had lower soil health scores (including carbon) 
relative to rotationally grazed treatments (significance not assessed). In 
contrast, Allen et al. (2013) reported a small negative effect of rotational 
grazing compared to continuous grazing and Orgill et al. (2014) re-
ported higher SOC stocks at 0–0.7 m under continuous grazing than 
rotational grazing. However, in this study results were confounded by 
fertiliser management and no difference was found at 0–0.3 m. 

Possible explanations for lack of a significant response in SOC to 
grazing management in Australia include context-specific responses and 

influence of climate, soil type, baseline SOC, pasture composition, type 
of management and soil sampling methodology. Soil, rainfall and 
pasture type are expected to impact the response of soil carbon to 
grazing management (McSherry and Ritchie, 2013). Furthermore, cli-
matic variability, such as drought or above average rainfall years, can 
have a significant influence on plant production (Ibrahim et al., 2018) 
and thus the rate of SOC sequestration or loss (Derner and Schuman, 
2007) and potentially mask changes observed through grazing man-
agement. Rainfall variability in Australia is 23% greater than elsewhere 
in the world (Love, 2005), and this variabilty may also explain a lack of 
significant response. In our review, grazing practices were grouped into 
broad classifications (e.g., low, medium, high intensity of grazing) and 
we were unable to examine impacts of all aspects of management 
associated with best practice. Teague and Barnes (2017) recommend 
rotational systems be managed adaptively (AMP grazing), to handle 
complexity and heterogeneity, over sufficient spatial scale and time 
frames to achieve and measure change. However, few studies strictly 
adhere to these principles. Limitations of grazing studies are well rec-
ognised, such as confounding of stocking rate between grazing treat-
ments (Briske et al., 2008; McDonald et al., 2019), publication bias (e.g. 
Hawkins et al., 2017), small spatial scales and short timeframes, rigid 
management approaches not representative of flexible grazing regimes 
(Briske et al., 2008; Teague et al., 2013) and relatively few studies have 
been undertaken utilising grazing systems with large numbers of pad-
docks (McDonald et al., 2019). Low numbers of studies and often lack of 
detail reported in studies limited our ability to understand more specific 
context or management-related responses and explore nuances of the 
impacts of different grazing management systems in more detail. 

Detection of significant changes in SOC can be challenging as change 
relative to existing soil carbon stocks is often slow over time, small in 
size, and spatially variable across multiple scales (Conant and Paustian, 
2002). This is further complicated in that grazing systems often have 
high background levels of SOC compared with cropping systems (Conant 
et al., 2017). A comprehensive and sophisticated sampling plan is 
required to detect smaller changes in the stock of organic carbon in soil 
that could be attributed to grazing management (Henry et al., 2023). 
Limitations such as sampling depth, measurement of bulk density, 
duration of a grazing treatment prior to sampling, location and timing of 
sampling within a rotationally grazed system, and a lack of statistical 
power of sampling designs have also been identified as potential sources 
contributing to the variance in research studies (Allen et al., 2013; 
Robertson and Nash, 2013; Badgery et al., 2020). 

Fig. 2. Location of studies included in review of grazing management impact on soil carbon in Australia, with number of sites sampled and major climate classes 
based on a modified Koppen classification system (BOM, 2023). 

Fig. 3. Results of overall (null) models in meta-analysis comparing (a) low 
versus high stocking intensity, and (b) continuous versus non-continuous 
grazing. Points represent the mean values, and black lines represent the 95% 
confidence intervals. Variables with confidence intervals crossing the dashed 
line indicate a non-significant response of grazing management on that vari-
able. Points to the left of the dashed line indicate the variable is greater under 
the control. The number of data points (contrasts) contributing to the analysis 
of each variable and unique studies included in the analysis is presented for 
each comparison. 
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4. Impact of grazing management on above-ground plant 
production, composition and ground cover 

The maximum amount of in situ OM supply to agricultural soil is 
mostly determined by net primary productivity (NPP) (Chapin et al., 
2006). Grazing influences NPP directly through a reduction in photo-
synthetic tissue and indirectly through changes to pasture composition, 
nitrogen cycling and nutrient availability (Piñeiro et al., 2010). 
Increasing stocking intensity results in greater plant removal via con-
sumption, and thus reduces OM inputs to soil which can decrease SOC 
(McSherry and Ritchie, 2013). Furthermore, as stocking intensity in-
creases, leaf-area of plants is reduced and pasture production often de-
creases (e.g. Stockdale and King, 1980). This reduces carbon dioxide 
(CO2) fixation from photosynthetic tissue and can limit belowground 
carbon inputs (Klumpp et al., 2009; Chen et al., 2015) and has impli-
cations for development of other plant traits (Falster et al., 2021). When 
grazing reduces NPP, pasture regeneration, or detrimentally changes 
pasture composition SOC stocks may decline (Chapman and Lemaire, 
1993). However, where there is sufficient pasture growth to sustain 
stocking rates, there may be no difference in pasture mass, pasture 
composition, quality or intake between stocking rates (e.g. Ash and 
McIvor, 1998). Therefore, grazing management that leaves residual 
herbage mass at levels that doesn’t cause a loss of desirable species is 
important for accumulation of SOC and sustaining production. 

Overall, the meta-analysis estimated herbage mass was on average 
42% (CI 35.2–48.4%) lower under the higher compared with lower 

stocking intensity treatments. Negative effects of higher stocking in-
tensity were significant for all intensity comparisons (Fig. 4b), in all 
climate regions, and such negative effects increased as annual rainfall 
increased (P < 0.05, Table A.4). Overall, plant growth rate was not 
significantly different with differing stocking intensity (Fig. 3, P =
0.148). When comparing type of intensity, growth rate was 15.5% (CI 
3.1–26.4%) greater under moderate stocking intensity compared with 
higher grazing intensities (Fig. 4c), although the number of studies 
examining growth rate was low (total n = 6). 

Grazing frequency affects the replenishment of non-structural car-
bohydrates (water-soluble carbohydrates and starch reserves). If the 
grazing interval of individual plants is too short to accumulate adequate 
reserves, plant regrowth will be suppressed. If this continues for an 
extended period, plant dry matter reduces and persistence can decline 
(Parsons and Chapman, 2000; Slack et al., 2000; Fulkerson and Dona-
ghy, 2001). Overall, herbage mass was 25% (CI 6.2–44.3%) greater 
under grazing systems that incorporated periods of rest than continuous 
grazing (Fig. 3). We found herbage mass was on average 40% (CI 
10.9–76.7%) greater under high-intensity rotational grazing (>10 pad-
docks) than continuous grazing, but the difference for low or moderate 
intensity rotational or seasonal grazing was not significant (P > 0.05, 
Fig. 5b). Inclusion of other moderator variables revealed the impact of 
stocking method was only significant in temperate regions (P = 0.003), 
the difference increased with annual rainfall (P < 0.001) and with the 
number of rest days per year (P < 0.001). The effect of stocking method 
on plant growth rate was not significant (P > 0.05). 

Fig. 4. Effects of stocking intensity on (a) soil organic carbon, (b) plant herbage mass, (c) plant growth rate, and (d) ground cover. L = low stocking rate, M =
medium stocking rate, H = high stocking rate. Points represent the mean values, and thick black lines represent the 95% confidence intervals. Variables with 
confidence intervals crossing the dashed line indicate a non-significant response of grazing on that variable. Points to the left of the dashed line indicate the variable 
is greater under the lower stocking intensity compared. The number of data points (contrasts) and the number of unique studies contributing to the analysis of each 
variable is shown (k). 
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While our meta-analysis did not reveal a significant impact of 
stocking method on pasture growth, the potential of high-intensity 
grazing over short durations and with long recovery periods to in-
crease pasture production is highlighted by Badgery et al. (2017b) in the 
high rainfall (>600 mm rainfall per annum) a temperate zone of New 
South Wales (NSW). They found that intensive rotational grazing with a 
20-paddock flexible system was able to increase pasture growth of a 
native pasture by 21% or 1.6 t DM ha− 1 year− 1 compared to continuous 
grazing, with most of the additional growth occurring in spring. In this 
study there was minimal change in pasture composition between sys-
tems. Few studies have examined the impact of stocking method on 
herbage mass or growth rate in drier (<500 mm) or subtropical envi-
ronments in Australia. 

High stocking intensity can also reduce the botanical composition of 
the pasture, reduce the survival of desirable pasture species (e.g., Moore, 
1970; Freudenberger et al., 1999; Kemp et al., 2000; Ash et al., 2011; Orr 
and Phelps, 2013) and change the morphology of plants (Clark et al., 
1982). Changes in plant botanical composition under grazing manage-
ment is a key driver of changes in SOC, in particular management that 
increases the relative proportion or abundance of C3 to C4 species 
(Derner et al., 2006; Derner and Schuman, 2007; Porensky et al., 2016). 
C4 grasses generally produce more biomass and have lower soil moisture 
requirements compared with C3 grasses and therefore are likely to 
produce more biomass and persist longer during drought (Taylor et al., 
2014; Bell et al. 2013). In Australia, Neal et al. (2013) examined SOC 
change for a wide range of forages and found that the C4 forages, Kikuyu 

(Cenchrus clandestinus) and Paspalum (Paspalum dilatatum), were the 
only forages to increase SOC despite other C3 forages having similar 
yields. There is often a shift in composition of perennial grasses with 
increased grazing pressure (Moore, 1970; Ash et al., 1997). This can 
alter the grassland productivity and the root dynamics, particularly if 
tap rooted broadleaf species increase. There is also evidence to suggest 
that increasing pasture diversity can increase SOC sequestration (e.g., 
Lange et al. 2015; Yang et al., 2019), although these relationships have 
not been examined in detail in Australia. 

Groundcover contributes to SOC accumulation in the surface soil 
layer (0–0.05 m). Beyond this layer, it is not a major source of organic 
material in the profile (Bird et al., 2003, 2008; Rees et al., 2005a; 
Swanston et al., 2005; Fröberg et al., 2007). However, g round cover 
(both standing vegetation and litter) can influence the rate of decom-
position of OM by regulating changes in soil temperature and moisture 
(Sharafatmandrad et al., 2010). Both the low density of OM, and its 
concentration in the surface soil make it susceptible to removal through 
soil erosion. By protecting the soil surface, ground cover can reduce the 
risk of OM loss via erosion (Facelli and Pickett, 1991). Grazing and 
trampling of plant material, degradation of soil structure and associated 
negative feedbacks on soil properties and plant production can reduce 
ground cover, with these effects expected to be more pronounced as 
stocking intensity increases (Tongway et al., 2003; Hill et al., 2004; 
McGregor, 2010; Ash et al., 2011; Hall et al., 2017). 

As with herbage mass, our analysis showed ground cover was greater 
under low intensity grazing, and under systems incorporating rest. 

Fig. 5. Effect of stocking method on (a) soil organic carbon, (b) plant herbage mass, (c) plant growth rate, and (d) ground cover. CG = continuous grazing, LMRG =
low/moderate intensity rotational grazing (<10 paddocks), HRG = high intensity rotational grazing (>10 paddocks), seasonal = seasonal grazing or resting stra-
tegies. Points represent the mean values, and thick black lines represent the 95% confidence intervals. Variables with confidence intervals crossing the dashed line 
indicate a non-significant response of grazing on that variable. Points to the left of the dashed line indicate the variable is greater under the continuous grazing 
treatment. The number of data points (contrasts) and the number of unique studies contributing to the analysis of each variable is shown (k). 
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Overall, ground cover was on average 8% (CI 2.7–14.5%) greater under 
lower compared with higher grazing intensities (Fig. 3). Specifically, the 
difference in ground cover between low and high stocking intensity was 
significant (P = 0.020, Fig. 4d), but not between low-moderate or 
moderate-high intensity comparisons. The difference in ground cover 
with stocking intensity was significant in subtropical climate regions (P 
= 0.032), and it became more apparent as annual rainfall increased (P =
0.008). Ground cover was estimated on average to be 16.5% (CI 
3.0–31.7%) greater in systems incorporating rest, compared to contin-
uously grazed systems (Fig. 3). This difference was significant in the 
comparison of low-moderate intensity rotation with continuous grazing 
(P = 0.010, Fig. 5d), and in semi-arid climates (P < 0.001). See Table A.6 
for further detail on model outputs. 

5. Impact of grazing management on below-ground biomass and 
root allocation 

Apart from the soil surface where litter and soil are in contact, the 
majority of OM in the soil profile is derived from root material and soil 
microbes (Milchunas et al., 1985; Boone, 1994; Norby and Cotrufo, 
1998; Puget and Drinkwater, 2001; Rasse et al., 2005; Jastrow et al., 
2007). Where grazing increases root carbon allocation and encourages 
growth of fast and deep growing fibrous roots, this can have positive 
impacts on SOC accumulation (Derner et al., 2006; McSherry and 
Ritchie, 2013). When plants are carbon-limited after defoliation they 
initially use root and pseudostem reserves to recover their leaf canopy. If 
defoliation occurs again before reserves have been fully replenished, the 
plants will prioritise shoot growth over roots, which reduces their root: 
shoot ratio (Moot et al., 2021), and potentially reduces carbon inputs 
into the soil. Reduced root biomass and changes in plant community 
structure can result in a decrease in soil fungi, proliferation of Gram (+) 
bacteria and accelerated decomposition of particulate organic carbon, 
decreasing SOC stocks (Klumpp et al., 2009). 

The measurement of below-ground biomass (roots) is more difficult 
than above-ground biomass and few studies have quantified the 
contribution of SOC from plant roots and the effect of species or man-
agement on this (Bolinder et al., 1997; Gill et al., 2002; Rasse et al., 
2005). Of the three Australian studies returned through our literature 
search, Lodge and King (2006) found no significant effect of stocking 
rate or method (low intensity rotation/seasonal resting) on root mass in 
native pastures, but in sown pasture, the lower stocking rate pasture had 
greater root mass; Lodge and Murphy (2006) found few differences in 
roots between grazing treatments; and in semi-arid NSW, increasing 
intensity of stocking had a negative impact on root growth of perennial 
grass and saltbush species (Hodgkinson and Becking, 1977). 

Overseas, studies show below-ground net productivity can be influ-
enced by stocking rate and stocking method (Gao et al., 2008; Chen 
et al., 2015; Wilson et al., 2018). However, vast differences in grazing 
pressure have also been shown to have little impact on root biomass 
when monitored over multiple seasons (McNaughton et al., 1998). 
Further research is required to understand the effects of grazing man-
agement on below-ground net primary productivity in an Australian 
context. While it is generally assumed that perennial grasses contribute 
more OM to soil compared with annual grasses (Bolinder et al., 1997; 
Jarecki and Lal, 2003; Culman et al., 2010), no significant difference in 
root contributions to soil under annual and perennial pastures has been 
reported in the few Australian studies that have tested this assumption 
(Chan et al., 2010, 2011). 

6. Impact of grazing management on soil nitrogen and soil 
structure 

Many grassland systems are limited by nitrogen availability for part 
or all their growing period (Rawnsley et al. 2019; Bilotto et al. 2021). 
The accumulation of organic carbon (C) in soil is closely linked with soil 
nitrogen availability (Piñeiro et al., 2010; Pringle et al., 2014) with the 

nitrogen and carbon cycles coupled through processes of accumulation, 
deposition and storage (Asner et al., 1997). Nitrogen can increase plant 
productivity (Christie et al. 2014) and reduce soil respiration (carbon 
loss from soil) (Piñeiro et al., 2010) provided other major nutrients are 
not limiting (Coonan et al., 2020), thus having a positive effect on SOC 
accumulation. As grazing pressure increases, the C:N ratio in the soil 
generally decreases and available N increases. The latter occurs through 
a higher utilisation of aboveground biomass and lower C content of litter 
returned to the soil (Wedin, 1999). The challenge is to understand this 
trade-off in different environments, and to determine at what level of 
grazing utilisation and incorporation of rest is optimal for building soil 
OM. 

Mineralisation of soil OM, derived from above and below-ground 
organic material, and atmospheric nitrogen fixation via legumes is an 
important source of nitrogen in unfertilised pasture systems (Pringle 
et al., 2014). Reductions in pasture growth or a reduction in the legume 
component (often preferentially grazed) of pasture as a result of grazing 
management can therefore create negative feedback loops for total N in 
these systems (Pringle et al., 2014). 

Grazing can also impact soil N through dung, urine (N losses or 
redistribution) and increased root allocation (thus N retention). Inten-
sive rotational grazing systems are promoted to improve uniformity of 
the distribution of dung and urine and avoid concentration around 
livestock camps (Sanjari et al., 2008; Mosier et al., 2021) and could 
assist in reducing N losses through denitrification. Cattle dung is 
approximately 10–40% C on a dry weight basis (Eghball et al., 1997; Bol 
et al., 2000) and cattle urine is approximately 1.5% C or 15,000 mg C/L 
(Lambie et al., 2012). Livestock excrement has been demonstrated to 
increase SOC in some parts of grazed fields (Franzluebbers et al., 2000). 
However, although dung and urine contain a considerable concentration 
of C, they rapidly decompose in soil (Underhay and Dickinson, 1978; 
Dickinson et al., 1981; Bol et al., 2000; Hatch et al., 2000). When 
considering the whole field, the 0–0.30 m soil layer, the rapid rate of 
excrement decomposition (Bol et al., 2000) and the lower input of OM 
from livestock excrement compared with plants (Rees et al., 2005a, 
2005b), livestock excreta is only a minor source of soil OM. 

Trampling by livestock can affect physical and chemical soil prop-
erties, including soil structure, water infiltration, soil moisture avail-
ability and nutrient cycling (Greenwood and McKenzie, 2001; Byrnes 
et al., 2018; Jiang et al., 2020). These impacts are generally greater in 
the soil surface layers and under higher grazing pressure (Greenwood 
and McKenzie, 2001). These factors in turn also affect root growth and 
plant productivity, creating a negative feedback cycle resulting in 
further degradation of soil and losses of carbon (Byrnes et al., 2018). 
Reduced porosity of soil due to compaction can also lead to changes in 
microbial communities and decrease microbial activity. Soil ecology is 
important in stabilising SOC, thereby reducing SOC loss and improving 
soil quality (Jastrow et al., 2007; Bhattacharyya et al., 2022). 

Hoof action of livestock is suggested to break hard setting soil crusts, 
thus facilitating nutrient cycling, microbial activity, and carbon 
sequestration, but this has not been adequately tested and needs careful 
attention where biological crusts are dominant (Hawkins, 2017). This 
phenomenon also varies between land types and may be less relevant in 
Australia where there were no native hard-hoofed animals prior to 
colonisation (Garnett et al., 2017). 

7. Co-benefits of managing grazing for SOC accumulation 

SOC is linked with provisioning, regulating and supporting 
ecosystem services (Adhikari and Hartemink, 2016). In particular, soil 
OM can increase soil stability (and associated positive functional 
changes including increased soil porosity, aeration and water infiltration 
& retention) by promoting the formation of soil aggregates, which has 
subsequent benefits for reducing soil erosion, soil degradation, and 
improving productivity of soil (Masciandaro et al., 2018). Furthermore, 
soil OM is associated with increased soil biodiversity, nutrient cycling 
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and soil fertility, primary productivity and economic benefits associated 
with increased pasture and livestock production (Pringle et al., 2011; 
Meyer et al., 2015; Waters et al., 2017; Masciandaro et al., 2018; Orgill 
et al., 2018). Increasing soil OM can also have considerable influence on 
regulating atmospheric CO2 levels, and thus an important role in climate 
regulation and may provide land-managers access to carbon markets. 

The review identified reducing stocking intensity, and incorporating 
periods of strategic rest into grazing systems as potentially benefitting 
key drivers of SOC accumulation, including above-ground biomass, 
perennial and N-fixing species, above and below-ground NPP, ground 
cover and soil structure. Incorporation of rest periods, which require 
some form of animal rotation, has been identified as a practice which 
supports long-term pasture productivity and sustainability (Hunt et al., 
2014) and can increase production per hectare (Waller and Sale, 2001; 
Graham et al., 2003; Badgery et al., 2017a; McDonald et al., 2019). 
However, other studies have shown that when stocking rate is accounted 
for, there is limited support for any effect of intensive rotational grazing 
systems on animal performance (Briske et al., 2008; Norman et al., 2010; 
Schatz et al., 2020) or profitability (Broadfoot et al. 2017; Amidy et al. 
2017). Reducing stocking rate can increase production per head (Jones 
and Sandland, 1974), but is also associated with a reduction in farm 
profitability (Amidy et al., 2017). Impacts of stocking rate and method 
on biodiversity in Australia are less clear and context-specific. Benefits 
for the conservation of threatened species or other desired species may 
be achieved when the timing of grazing and grazing pressure is targeted 
to the life-cycle of the desired species and to discourage less desirable 
species (e.g. Lodge et al., 1999). 

8. Potential role of improved grazing to increase soil carbon to 
meet CN30 

While we have not demonstrated soil carbon sequestration from 
improved grazing strategies, what would be needed to offset livestock 
emissions? Livestock GHG emissions from a 1200 ha grazing property 
used for wool production and carrying 7–9 DSE/ha in Victoria, Australia 
were estimated to be 2520 t CO2e/year (Browne et al., 2014). This 
would require 2.1 t CO2e or 0.57 t C/ha/year to be stored in the soil to 
fully offset the livestock emissions. While this rate of sequestration is in 
the range of what is achievable under optimal conditions and manage-
ment, more intensive systems would generally have higher emissions 
and require greater sequestration (Doran-Browne et al., 2017). Addi-
tionally, there are several constraining factors that contribute to rare 
occurrence of optimal conditions for soil carbon sequestration. 

Over time, soil carbon sequestration reaches an equilibrium level 
based on site conditions and management (Godde et al., 2020; Smith 
et al., 2014), which has implications on spatial and temporal potential 
for optimal soil C sequestration. 1) In areas with already high levels of 
SOC methods to increase SOC further are limited; 2) in areas with low to 
moderate carbon, over time the sequestration associated with manage-
ment will slow as the new equilibrium is reached; and 3) management 
implemented to increase SOC needs to continue in perpetuity to main-
tain the new equilibrium SOC amount. Other changes in conditions, 
including climate change, also impact on the potential to sequester soil 
carbon (Meyer et al., 2018), and soil carbon sequestration is prone to 
substantial seasonal fluctuations (Badgery et al., 2020). Compounding 
this is the difficulty in monitoring the potentially small changes over 
large diverse areas (Robertson and Nash, 2013). The uncertainty 
involved leads to accounting deductions, further reducing the carbon 
reduction that can be claimed. 

It is also important to consider off-site impacts associated with dis-
placed production if a reduction in production is required to increase 
SOC. These off-site impacts tend to outweigh the local effects for grazing 
management by a factor of 6–8 (Balmford et al., 2018). For these rea-
sons, management of grazing strategy alone is considered a high-risk 
option to offset emissions in the Australian livestock industries and 
will have a limited role either in time or in area of application. This 

supports the suggestion of Herrero et al. (2016) that sequestration of 
SOC in grazing systems be considered a co-benefit of improved pro-
ductivity and ecosystem services, but not the primary objective of 
management. 

9. Conclusions and research recommendations 

Despite limited direct evidence of the impact of grazing management 
on SOC under Australian conditions, there is evidence stocking intensity 
and method can positively affect the key drivers of carbon sequestration, 
including above and below-ground biomass, plant growth rate, ground-
cover, soil structure and soil nitrogen. In managing the grazing system to 
improve these key drivers the conditions for sequestering carbon are 
enhanced. The results highlight the context-specific nature of grazing 
management impacts and the complexity of landscapes, grazing systems, 
and farmer decision making. Further research is warranted to better un-
derstand the environments and management approaches that are 
conducive to greater carbon sequestration in Australian soils. Plant 
growth rate, below-ground plant production and root dynamics are rec-
ognised as key drivers of carbon sequestration in grazing systems. How-
ever, there is little research in Australia that has explored the impact of 
grazing management on these factors, and it is recommended future 
research focuses on the response of these drivers to grazing management 
and includes these as explanatory variables in soil carbon research. 
Furthermore, grazing systems are complex, and integrated with other 
landscape specific practices (e.g. addressing soil constraints) that in-
crease inputs of organic material into soil and influence stability of 
organic carbon in soil, research incorporating the impact of these addi-
tional management practices may be informative. As technology de-
velops, sampling costs decrease and methodologies for sampling 
improve, changes in SOC under contrasting grazing management may 
become more apparent. However, due to temporal and spatial limitations 
for improved grazing strategies to store soil carbon or to monitor change 
in soil carbon with confidence, it is unlikely to be a cornerstone strategy 
for the Australian Livestock Industry to mitigate livestock emissions. 

Funding 

This work was supported by Meat and Livestock Australia [grant 
number B.CCH.2121] and the Australian Wool Innovation (Project 
Number OF-00614). 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
Sarah McDonald, Warwick Badgery, Simon Clarendon, Susan Orgill, 
Katrina Sinclair, Rachelle Meyer, Dominique Bowen Butchart, Richard 
Eckard, David Rowlings, Peter Grace, Natalie Doran-Browne, Ainslie 
Macdonald, Michael Wellington, Anibal Nahuel Pachas, Martin Amidy, 
Rowan Eisner, Matthew Harrison reports financial support was provided 
by Meat and Livestock Australia. Matthew Harrison reports financial 
support was provided by Australian Wool Innovation. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The Authors are thankful for the assistance of Yohannes Alemseged 
and Ian Toole for assistance in the initial literature search, Mick Rose for 
providing helpful advice and guidance regarding methodology of the 
meta-analysis and Lachy Ingram, Aaron Simmons and the anonymous 
reviewers for reviewing drafts of this paper and providing helpful 
comments and advice. 

S.E. McDonald et al.                                                                                                                                                                                                                           



Journal of Environmental Management 347 (2023) 119146

13

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jenvman.2023.119146. 

References 

Abdalla, M., Hastings, A., Chadwick, D.R., Jones, D.L., Evans, C.D., Jones, M.B., Rees, R. 
M., Smith, P., 2018. Critical review of the impacts of grazing intensity on soil organic 
carbon storage and other soil quality indicators in extensively managed grasslands. 
Agric. Ecosyst. Environ. 253, 62–81. https://doi.org/10.1016/j.agee.2017.10.023. 

Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services—a global 
review. Geoderma 262, 101–111. https://doi.org/10.1016/j. 
geoderma.2015.08.009. 

Alemseged, Y., Hacker, R.B., Smith, W.J., Melville, G.J., 2011. Temporary cropping in 
semi-arid shrublands increases native perennial grasses. Rangel. J. 33, 67–78. 
https://doi.org/10.1071/RJ10022. 

Allen, D.E., Pringle, M.J., Bray, S., Hall, T.J., O’Reagain, P.O., Phelps, D., Cobon, D.H., 
Bloesch, P.M., Dalal, R.C., 2013. What determines soil organic carbon stocks in the 
grazing lands of north-eastern Australia? Soil Res. 51, 695–706. https://doi.org/ 
10.1071/SR13041. 

Amidy, M.R., Behrendt, K., Badgery, W.B., 2017. Assessing the profitability of native 
pasture grazing systems: a stochastic whole-farm modelling approach. Anim. Prod. 
Sci. 57, 1859–1868. https://doi.org/10.1071/AN16678. 

Apfelbaum, S.I., Thompson, R., Wang, F., Mosier, S., Teague, R., Byck, P., 2022. 
Vegetation, water infiltration, and soil carbon response to Adaptive Multi-Paddock 
and Conventional grazing in Southeastern USA ranches. J. Environ. Manag. 308, 
114576 https://doi.org/10.1016/j.jenvman.2022.114576. 

Ash, A., McIvor, J., Mott, J., Andrew, M., 1997. Building grass castles: integrating 
ecology and management of Australia’s tropical tallgrass rangelands. Rangel. J. 19, 
123–144. https://doi.org/10.1071/RJ9970123. 

Ash, A.J., Corfield, J.P., McIvor, J.G., Ksiksi, T.S., 2011. Grazing management in tropical 
savannas: utilization and rest strategies to manipulate rangeland condition. Rangel. 
Ecol. Manag. 64, 223–239. https://doi.org/10.2111/REM-D-09-00111.1. 

Ash, A.J., McIvor, J.G., 1998. Forage quality and feed intake responses of cattle to 
improved pastures, tree killing and stocking rate in open eucalypt woodlands of 
north-eastern Australia. J. Agric. Sci. 131, 211–219. https://doi.org/10.1017/ 
S0021859698005607. 

Asner, G.P., Seastedt, T.R., Townsend, A.R., 1997. The decoupling of terrestrial carbon 
and nitrogen cycles. Bioscience 47, 226–234. https://doi.org/10.2307/1313076. 

Badgery, W., Millar, G., Michalk, D., Cranney, P., Broadfoot, K., 2017a. The intensity of 
grazing management influences lamb production from native grassland. Anim. Prod. 
Sci. 57, 1837–1848. https://doi.org/10.1071/AN15866. 

Badgery, W.B., Millar, G.D., Broadfoot, K., Michalk, D.L., Cranney, P., Mitchell, D., van 
de Ven, R., 2017b. Increased production and cover in a variable native pasture 
following intensive grazing management. Anim. Prod. Sci. 57, 1812–1823. https:// 
doi.org/10.1071/AN15861. 

Badgery, W.B., Mwendwa, J.M., Anwar, M.R., Simmons, A.T., Broadfoot, K.M., 
Rohan, M., Singh, B.P., 2020. Unexpected increases in soil carbon eventually fell in 
low rainfall farming systems. J. Environ. Manag. 261, 110192 https://doi.org/ 
10.1016/j.jenvman.2020.110192. 

Badgery, W.B., Simmons, A.T., Murphy, B.W., Rawson, A., Andersson, K.O., Lonergan, V. 
E., 2014. The influence of land use and management on soil carbon levels for crop- 
pasture systems in Central New South Wales, Australia. Agric. Ecosyst. Environ. 196, 
147–157. https://doi.org/10.1016/j.agee.2014.06.026. 

Balmford, A., Amano, T., Bartlett, H., Chadwick, D., Collins, A., Edwards, D., Field, R., 
Garnsworthy, P., Green, R., Smith, P., Waters, H., Whitmore, A., Broom, D.M., 
Chara, J., Finch, T., Garnett, E., Gathorne-Hardy, A., Hernandez-Medrano, J., 
Herrero, M., Hua, F., Latawiec, A., Misselbrook, T., Phalan, B., Simmons, B.I., 
Takahashi, T., Vause, J., zu Ermgassen, E., Eisner, R., 2018. The environmental costs 
and benefits of high-yield farming. Nat. Sustain. 1, 477–485. https://doi.org/ 
10.1038/s41893-019-0265-7. 

Bell, M.J., Eckard, R.J., Harrison, M.T., Neal, J.S., Cullen, B.R., 2013. Effect of warming 
on the productivity of perennial ryegrass and kikuyu pastures in south-eastern 
Australia. Crop Pasture Sci. 64, 61–70. https://doi.org/10.1071/CP12358. 

Bhattacharyya, S.S., Ros, G.H., Furtak, K., Iqbal, H.M.N., Parra-Saldívar, R., 2022. Soil 
carbon sequestration – an interplay between soil microbial community and soil 
organic matter dynamics. Sci. Total Environ. 815, 152928 https://doi.org/10.1016/ 
j.scitotenv.2022.152928. 

Bilotto, F., Harrison, M.T., Migliorati, M.D.A., Christie, K.M., Rowlings, D.W., Grace, P. 
R., Smith, A.P., Rawnsley, R.P., Thorburn, P.J., Eckard, R.J., 2021. Can seasonal soil 
N mineralisation trends be leveraged to enhance pasture growth? Sci. Total Environ. 
772, 145031 https://doi.org/10.1016/j.scitotenv.2021.145031. 

Bird, J.A., Kleber, M., Torn, M.S., 2008. 13C and 15N stabilization dynamics in soil 
organic matter fractions during needle and fine root decomposition. Org. Geochem. 
39, 465–477. https://doi.org/10.1016/j.orggeochem.2007.12.003. 

Bird, M., Kracht, O., Derrien, D., Zhou, Y., 2003. The effect of soil texture and roots on 
the stable carbon isotope composition of soil organic carbon. Soil Res. 41, 77–94. 
https://doi.org/10.1071/SR02044. 

Bishop, J., Nakagawa, S., 2021. Quantifying crop pollinator dependence and its 
heterogeneity using multi-level meta-analysis. J. Appl. Ecol. 58, 1030–1042. https:// 
doi.org/10.1111/1365-2664.13830. 

Bol, R., Amelung, W., Friedrich, C., Ostle, N., 2000. Tracing dung-derived carbon in 
temperate grassland using 13C natural abundance measurements. Soil Biol. 
Biochem. 32, 1337–1343. https://doi.org/10.1016/S0038-0717(00)00022-5. 

Bolinder, M., Angers, D., Dubuc, J., 1997. Estimating shoot to root ratios and annual 
carbon inputs in soils for cereal crops. Agric. Ecosyst. 63, 61–66. https://doi.org/ 
10.1016/S0167-8809(96)01121-8. 

Bom, 2023. Climate Classification Maps, Koppen – Major Classes. Bureau of Meteorology. 
Australian Government. http://www.bom.gov.au/climate/maps/averages/climat 
e-classification/?maptype=kpngrp. (Accessed 20 August 2023). 

Boone, R.D., 1994. Light-fraction soil organic matter: origin and contribution to net 
nitrogen mineralization. Soil Biol. Biochem. 26, 1459–1468. https://doi.org/ 
10.1016/0038-0717(94)90085-X. 

Bray, S., Doran-Browne, N., O’Reagain, P., 2014. Northern Australian pasture and beef 
systems. 1. Net carbon position. Anim. Prod. Sci. 54, 1988–1994. https://doi.org/ 
10.1071/AN14604. 

Briske, D.D., Derner, J., Brown, J., Fuhlendorf, S.D., Teague, W., Havstad, K., Gillen, R.L., 
Ash, A.J., Willms, W., 2008. Rotational grazing on rangelands: reconciliation of 
perception and experimental evidence. Rangel. Ecol. Manag. 61, 3–17. https://doi. 
org/10.2111/06-159R.1. 

Broadfoot, K.M., Badgery, W.B., Millar, G.D., 2017. Post-experimental modelling of 
grazing systems to improve profit and environmental outcomes using AusFarm. 
Anim. Prod. Sci. 57, 1849–1858. https://doi.org/10.1071/AN16129. 

Browne, N.A., Behrendt, R., Kingwell, R.S., Eckard, R.J., 2014. Does producing more 
product over a lifetime reduce greenhouse gas emissions and increase profitability in 
dairy and wool enterprises? Anim. Prod. Sci. 55, 49–55. 

Byrnes, R.C., Eastburn, D.J., Tate, K.W., Roche, L.M., 2018. A global meta-analysis of 
grazing impacts on soil health indicators. J. Environ. Qual. 47, 758–765. https://doi. 
org/10.2134/jeq2017.08.0313. 

Cattle, S., Southorn, N., 2010. Macroporosity of pasture topsoils after three years of set- 
stocked and rotational grazing by sheep. Soil Res. 48, 43–57. https://doi.org/ 
10.1071/SR09004. 

Chan, K.Y., Conyers, M., Li, G., Helyar, K., Poile, G., Oates, A., Barchia, I., 2011. Soil 
carbon dynamics under different cropping and pasture management in temperate 
Australia: results of three long-term experiments. Soil Res. 49, 320–328. https://doi. 
org/10.1071/SR10185. 

Chan, K.Y., Oates, A., Li, G., Conyers, M., Prangnell, R., Poile, G., Liu, D., Barchia, I., 
2010. Soil carbon stocks under different pastures and pasture management in the 
higher rainfall areas of south-eastern Australia. Soil Res. 48, 7–15. https://doi.org/ 
10.1071/SR09092. 

Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., 
Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., 
Aber, J., Cole, J., Goulden, M., Harden, J., Heimann, M., Howarth, R., Matson, P., 
McGuire, A., Melillo, J., Mooney, H., Neff, J., Houghton, R., Pace, M., Ryan, M., 
Running, S., Sala, O., Schlesinger, W., Schulze, E.-D., 2006. Reconciling carbon-cycle 
concepts, terminology, and methods. Ecosystems 9, 1041–1050. https://doi.org/ 
10.1007/s10021-005-0105-7. 

Chapman, D., Lemaire, G., 1993. Morphogenetic and Structural Determination of Plant 
Regrowth after Defoliation. 17. International Grassland Congress. CSIRO. 

Charley, J.L., Cowling, S.W., 1968. Changes in soil nutrient status resulting from 
overgrazing and their consequences in plant communities of semi-arid areas. Proc. 
Ecol. Soc. Aust. 3, 28–38. 

Chen, W., Huang, D., Liu, N., Zhang, Y., Badgery, W.B., Wang, X., Shen, Y., 2015. 
Improved grazing management may increase soil carbon sequestration in temperate 
steppe. Sci. Rep. 5, 10892 https://doi.org/10.1038/srep10892. 

Christie, K.M., Rawnsley, R.P., Harrison, M.T., Eckard, R.J., 2014. Using a modelling 
approach to evaluate two options for improving animal nitrogen use efficiency and 
reducing nitrous oxide emissions on dairy farms in southern Australia. Anim. Prod. 
Sci. 54, 1960–1970. https://doi.org/10.1071/AN14436. 

Clark, D.A., Lambert, M.G., Chapman, D.F., 1982. Pasture management and hill country 
production. In: Proceedings of the New Zealand Grassland Association, vol. 43, 
pp. 205–214. https://doi.org/10.33584/jnzg.1982.43.1584, 1982, New Plymouth.  

Conant, R.T., Cerri, C.E., Osborne, B.B., Paustian, K., 2017. Grassland management 
impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668. https://doi. 
org/10.1002/eap.1473. 

Conant, R.T., Paustian, K.J.E.P., 2002. Spatial variability of soil organic carbon in 
grasslands: implications for detecting change at different scales. Environ. Pollut. 
116, S127–S135. https://doi.org/10.1016/S0269-7491(01)00265-2. 

Coonan, E.C., Kirkby, C.A., Kirkegaard, J.A., Amidy, M.R., Strong, C.L., Richardson, A.E., 
2020. Microorganisms and nutrient stoichiometry as mediators of soil organic matter 
dynamics. Nutrient Cycl. Agroecosyst. 117, 273–298. https://doi.org/10.1007/ 
s10705-020-10076-8. 

Cowie, A.L., Lonergan, V.E., Rabbi, S.M.F., Fornasier, F., Macdonald, C., Harden, S., 
Kawasaki, A., Singh, B.K., 2013. Impact of carbon farming practices on soil carbon in 
northern New South Wales. Soil Res. 51, 707–718. https://doi.org/10.1071/ 
SR13043. 

Culman, S., DuPont, S., Glover, J., Buckley, D., Fick, G., Ferris, H., Crews, T., 2010. Long- 
term impacts of high-input annual cropping and unfertilized perennial grass 
production on soil properties and belowground food webs in Kansas, USA. Agric. 
Ecosyst. Environ. 137, 13–24. https://doi.org/10.1016/j.agee.2009.11.008. 

DCCEEW, 2020. Australia’s National Greenhouse Accounts. Emissions by State and 
Territory. Australian Government. Department of Climate Change, Energy, the 
Environment and Water. 

Derner, J.D., Schuman, G.E., 2007. Carbon sequestration and rangelands: a synthesis of 
land management and precipitation effects. J. Soil Water Conserv. 62, 77–85. 

S.E. McDonald et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.jenvman.2023.119146
https://doi.org/10.1016/j.jenvman.2023.119146
https://doi.org/10.1016/j.agee.2017.10.023
https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.1071/RJ10022
https://doi.org/10.1071/SR13041
https://doi.org/10.1071/SR13041
https://doi.org/10.1071/AN16678
https://doi.org/10.1016/j.jenvman.2022.114576
https://doi.org/10.1071/RJ9970123
https://doi.org/10.2111/REM-D-09-00111.1
https://doi.org/10.1017/S0021859698005607
https://doi.org/10.1017/S0021859698005607
https://doi.org/10.2307/1313076
https://doi.org/10.1071/AN15866
https://doi.org/10.1071/AN15861
https://doi.org/10.1071/AN15861
https://doi.org/10.1016/j.jenvman.2020.110192
https://doi.org/10.1016/j.jenvman.2020.110192
https://doi.org/10.1016/j.agee.2014.06.026
https://doi.org/10.1038/s41893-019-0265-7
https://doi.org/10.1038/s41893-019-0265-7
https://doi.org/10.1071/CP12358
https://doi.org/10.1016/j.scitotenv.2022.152928
https://doi.org/10.1016/j.scitotenv.2022.152928
https://doi.org/10.1016/j.scitotenv.2021.145031
https://doi.org/10.1016/j.orggeochem.2007.12.003
https://doi.org/10.1071/SR02044
https://doi.org/10.1111/1365-2664.13830
https://doi.org/10.1111/1365-2664.13830
https://doi.org/10.1016/S0038-0717(00)00022-5
https://doi.org/10.1016/S0167-8809(96)01121-8
https://doi.org/10.1016/S0167-8809(96)01121-8
http://www.bom.gov.au/climate/maps/averages/climate-classification/?maptype=kpngrp
http://www.bom.gov.au/climate/maps/averages/climate-classification/?maptype=kpngrp
https://doi.org/10.1016/0038-0717(94)90085-X
https://doi.org/10.1016/0038-0717(94)90085-X
https://doi.org/10.1071/AN14604
https://doi.org/10.1071/AN14604
https://doi.org/10.2111/06-159R.1
https://doi.org/10.2111/06-159R.1
https://doi.org/10.1071/AN16129
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref29
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref29
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref29
https://doi.org/10.2134/jeq2017.08.0313
https://doi.org/10.2134/jeq2017.08.0313
https://doi.org/10.1071/SR09004
https://doi.org/10.1071/SR09004
https://doi.org/10.1071/SR10185
https://doi.org/10.1071/SR10185
https://doi.org/10.1071/SR09092
https://doi.org/10.1071/SR09092
https://doi.org/10.1007/s10021-005-0105-7
https://doi.org/10.1007/s10021-005-0105-7
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref35
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref35
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref36
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref36
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref36
https://doi.org/10.1038/srep10892
https://doi.org/10.1071/AN14436
https://doi.org/10.33584/jnzg.1982.43.1584
https://doi.org/10.1002/eap.1473
https://doi.org/10.1002/eap.1473
https://doi.org/10.1016/S0269-7491(01)00265-2
https://doi.org/10.1007/s10705-020-10076-8
https://doi.org/10.1007/s10705-020-10076-8
https://doi.org/10.1071/SR13043
https://doi.org/10.1071/SR13043
https://doi.org/10.1016/j.agee.2009.11.008
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref45
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref45
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref45
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref46
http://refhub.elsevier.com/S0301-4797(23)01934-5/sref46


Journal of Environmental Management 347 (2023) 119146

14

Derner, J.D., Boutton, T.W., Briske, D.D., 2006. Grazing and ecosystem carbon storage in 
the north American great plains. Plant Soil 280, 77–90. https://doi.org/10.1007/ 
s11104-005-2554-3. 

Dey, R., Bador, M., Alexander, L.V., Lewis, S.C., 2021. The drivers of extreme rainfall 
event timing in Australia. Int. J. Climatol. 41, 6654–6673. https://doi.org/10.1002/ 
joc.7218. 

di Virgilio, A., Lambertucci, S.A., Morales, J.M., 2019. Sustainable grazing management 
in rangelands: over a century searching for a silver bullet. Agric. Ecosyst. Environ. 
283, 106561 https://doi.org/10.1016/j.agee.2019.05.020. 

Dickinson, C., Underhay, V., Ross, V., 1981. Effect of season, soil fauna and water content 
on the decomposition of cattle dung pats. New Phytol. 88, 129–141. https://doi.org/ 
10.1111/j.1469-8137.1981.tb04576.x. 

Doran-Browne, N., Wootton, M., Taylor, C., Eckard, R., 2017. Offsets required to reduce 
the carbon balance of sheep and beef farms through carbon sequestration in trees 
and soils. Anim. Prod. Sci. 58 (9), 1648–1655. 

Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected 
by a simple, graphical test. BMJ 315, 629–634. https://doi.org/10.1136/ 
bmj.315.7109.629. 

Eghball, B., Power, J.F., Gilley, J.E., Doran, J.W., 1997. Nutrient, carbon, and mass loss 
during composting of beef cattle feedlot manure. J. Environ. Qual. 26, 189–193. 
https://doi.org/10.2134/jeq1997.00472425002600010027x. 

Eldridge, D.J., Beecham, G., Grace, J.B., 2015. Do shrubs reduce the adverse effects of 
grazing on soil properties? Ecohydrology 8, 1503–1513. https://doi.org/10.1002/ 
eco.1600. 

Eldridge, D.J., Maestre, F.T., Koen, T.B., Delgado-Baquerizo, M., 2018. Australian 
dryland soils are acidic and nutrient-depleted, and have unique microbial 
communities compared with other drylands. J. Biogeogr. 45, 2803–2814. https:// 
doi.org/10.1111/jbi.13456. 

Facelli, J.M., Pickett, S.T., 1991. Plant litter: its dynamics and effects on plant 
community structure. The Bot.l Rev. 57, 1–32. https://doi.org/10.1007/ 
BF02858763. 

Falster, D., Gallagher, R., Wenk, E.H., Wright, I.J., Indiarto, D., Andrew, S.C., Baxter, C., 
Lawson, J., Allen, S., Fuchs, A., Monro, A., Kar, F., Adams, M.A., Ahrens, C.W., 
Alfonzetti, M., Angevin, T., Apgaua, D.M.G., Arndt, S., Atkin, O.K., Atkinson, J., 
Auld, T., Baker, A., von Balthazar, M., Bean, A., Blackman, C.J., Bloomfield, K., 
Bowman, D.M.J.S., Bragg, J., Brodribb, T.J., Buckton, G., Burrows, G., Caldwell, E., 
Camac, J., Carpenter, R., Catford, J.A., Cawthray, G.R., Cernusak, L.A., Chandler, G., 
Chapman, A.R., Cheal, D., Cheesman, A.W., Chen, S.-C., Choat, B., Clinton, B., 
Clode, P.L., Coleman, H., Cornwell, W.K., Cosgrove, M., Crisp, M., Cross, E., 
Crous, K.Y., Cunningham, S., Curran, T., Curtis, E., Daws, M.I., DeGabriel, J.L., 
Denton, M.D., Dong, N., Du, P., Duan, H., Duncan, D.H., Duncan, R.P., Duretto, M., 
Dwyer, J.M., Edwards, C., Esperon-Rodriguez, M., Evans, J.R., Everingham, S.E., 
Farrell, C., Firn, J., Fonseca, C.R., French, B.J., Frood, D., Funk, J.L., Geange, S.R., 
Ghannoum, O., Gleason, S.M., Gosper, C.R., Gray, E., Groom, P.K., Grootemaat, S., 
Gross, C., Guerin, G., Guja, L., Hahs, A.K., Harrison, M.T., Hayes, P.E., Henery, M., 
Hochuli, D., Howell, J., Huang, G., Hughes, L., Huisman, J., Ilic, J., Jagdish, A., 
Jin, D., Jordan, G., Jurado, E., Kanowski, J., Kasel, S., Kellermann, J., Kenny, B., 
Kohout, M., Kooyman, R.M., Kotowska, M.M., Lai, H.R., Laliberté, E., Lambers, H., 
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