Inspirational timber projects and systems

Part II – structural systems & products

Sticks

- Small timber sections
- Simple connections
- In-situ construction
- AS1684
 Typical 1-2 floors in Aus

Up to around five common internationally
Post and beam

- Glulam columns
- Glulam beams
- Fabricated steel nodes
- Solid timber slabs & joists

W.I.S.E, C.A.T.
Pат Борер и Дэвид Лей Арх (Великобритания)

Post and beam

- Steel columns
- Glulam beams
- Solid timber slabs

John Hope Gateway
Edward Cullinan Arch. (Великобритания)
Post and beam

- Prestressed timber box beams
- LVL and plywood
- Solid timber slabs

STIC NZ

Post and beam

- Portals
- Plywood/LVL box beams
- 42m span

Auckland MOTAT

Studio Pacific Architecture

NZ
Solid panels/planes - products

- Developed in central Europe in the 90s
- Size generally limited by transport restrictions
- Up to 500mm thick
- One producer in NZ

CROSS-LAMINATED-TIMBER

KLH Massivholz, StoraEnso, X-Lam

Solid panels/planes - products

- Low-grade timber
- Joined by timber dowel or nails

Brettstapel

Continental Europe and UK
Solid panels/planes - products

- Low-grade timber
- Wenus panel system
- Exposed sofit
- Efficient span:material
- Requires jig to manufacture

Sandoz, iBois, EPFL
Solid panels/planes - products

- Low-grade timber
- Short elements in ‘stressed skin’
- Compressed with threaded rod
- Common in Canadian bridge decks 1970 and 1980

Freedman, Kermani Napier uni
Duwadi, Ritter FWHA

www.csaw.utas.edu.au
Solid panels/planes - products

• CLT2.0
• Lower capital base CLT manufacture
• Boards glued and stapled into placed rather than pressed

Douglas Consultants Canada

Solid panels/planes - systems

• Floors/ceilings
• Low or high-tech solutions: CLT, Brettstapel etc
• On timber or other frame/walls
• Can provide floor diaphragm
• Architecturally expressed or concealed
Solid panels/planes - systems

- Walls
- Can provide lateral stability system
- Architecturally expressed or concealed

Solid panels/planes - systems

- Folded plates, origami
- Folding structure introduces structural depth
- Simple connections are key

i Bois, EPFL
Dome

- Proprietary connection systems available for conventional geometry
- Connection design is key
- Typically glulam elements joined at metal nodes
- Efficient
- Often chosen due to cost
- Superior Dome Michigan 165m span

Haring.ch
Cowley Timberwork

- More complex arrangements possible
- Can lead to very onerous forces and complex nodes

Scunthorpe Sports Academy
Andrew Wright Architects
UK
Gridded surfaces – small elements

- Small elements bent in-situ
- Grid around 500mm to 1m
- Double curvature is key
- Base connection critical
- Construction process
- In plane bracing important

Manheim Gridshell, Frei Otto, Ger
Japan Pavilion, Shigeru Ban,
Hanover Expo

GRIDSHELL
Weald and Downland, Edward Cullinan Arch.
Windsor Great Park Gridshell Glenn Howells Arch
UK

www.csaw.utas.edu.au
Gridded surfaces – large elements

- Large rigid elements
- Typically LVL or glulam
- Grid around 500mm to 1.5m
- Arrangement gives bending stiffness
- Connection within grid is critical
- Point supports can be awkward

LAMELLA STRUCTURES

Gridded surfaces – large elements

- Large elements
- Typically LVL or ‘glulam’
- Multi-layer triangulated grid
- Rationalising members is key
- Double curvature helps
- Fabrication is critical
- Cost

Metz Pompidou, Shigeru Ban, France
Yeoju Golf club, Korea
Questions?