The IntoDairy project, a DairyTas initiative, recently came to an end after five productive years. The project aimed to accelerate the growth in Tasmania's annual milk production to meet the imbalance between processing capacity and farm output.

Funding for the project was provided from Dairy Australia, DairyTas, State Government, Milk Companies (Fonterra, TDP/MG, Cadbury and Lion), Commonwealth Government and industry sponsors for the first year (Roberts, Merial, Iplex, Integrated Packaging, Waratah and Philmac).

Key project activities

Project activities spanned the core areas of building the Herd, developing People and facilitating Investment. Projects included:

- Heifer Rearing and Agistment
- Building the Herd
- Property Purchase Plans/Planning for Growth
- Dairy Conversion Plans – 18 plans completed
- Encouraging investment, including Dairy Investment Guide and Dairy Regions
- Overseas Recruitment – mainly in UK and NZ
- Farm Business Management and HR – 220 dairy farms
- Mentoring; young farmers and financial management
- Veterinary Residency program
- Increasing Participation/Image Building, including “Faces of Tasmanian Dairy” video and Circular Head Pro-Dairy group
- Clean Rivers sustainability program – 28 dairy farms
- Tactics for Tight Times/Taking Stock program – 140 dairy farms

For the rest of 2017, work will continue in existing programs, such as the Pro-Dairy group in Circular Head, Dairy Scholarships, financial literacy and Succession Planning.

Outcomes of the project

While the IntoDairy project did not achieve the ambitious production targets, it has provided a springboard for future growth of the Tasmanian dairy industry.

The project supported new dairy conversions and state-wide interest in dairy was generated, especially due to continued over page > >
Making silage in rainy weather!

Frank Mickan, Pasture and Fodder Conservation Specialist, Agriculture Victoria

One of the key strategies to making quality silage is cutting it early. However, in Tasmania, early in the season, it can be hard to find two fine days in a row in order to cut and wilt to the desired dry matter. But consider this – cutting early with some rain damage will result in a silage of better quality than that cut later. When pasture is starting to go reproductive, digestibility is dropping about 3-5 percentage units per 7-10 days, and protein dropping 1-3 units. The aim is to put chopped stack silage in at about 30–35% dry matter content (DM) versus 40–50% DM for baled silage. If this is not done, the silage will undergo a less desirable fermentation, be of lower quality and be less palatable.

The longer a mown crop is on the ground, and/or the more rain that falls on it, the greater the losses of dry matter and quality (energy and protein). This is caused by plant respiration, microbial and bacterial caused losses, leaching losses and some possible leaf shatter.

Let’s look at some scenarios of wet weather and some possible actions to consider.

Short periods of drying weather

Try to beg, borrow or steal a tedder, tedder rake and/or mow with a mower conditioner – all of which will substantially speed up the rate of wilting and possibly beat the rain. The more widely spread and thinner the windrow, the quicker the wilting. Ted 2–3 times if the weather suits. Definitely spread (ted) straight after mowing! Respread after most of the dew has lifted the next morning by whatever sun there is, as it amounts to about 1.00 to 2.5 tonnes/ha of water.

For those farmers who have access to a mower conditioner, leave the swath boards as wide as possible to produce the thinner, wider, and quicker drying windrows. The tyed types of conditioners are more suited for pastures than the roller types, although the latter are still most suitable for thicker stemmed crops such as summer forages and cereals.

Crop has been cut and rain is threatening

If rain is threatening by late on day two or during day three after mowing, and the desired amount of wilting had not been achieved, “Go for it!” You’ll never reliably predict the amount or duration of the approaching rain, so if you wait, Murphy’s Law says “It will pour rain.” Forage which is ensiled too wet after laying on the ground for days on end will, at best, have very poor fermentation due to lack of sugars for the ensiling bacteria to convert to acid, which “pickles” the grass to become silage. At worst, the material may not be much better than compost – the probable outcome if it does pour! There will be some effluent produced which must not enter waterways.

Rain has started during harvesting

a) Forage harvesting: Stop harvesting if mud is being carried onto the stack, as this will result in a very poor quality fermentation in the silage. If you are fortunate enough to have a heavily wilted crop, a small amount of rain will not be too detrimental. If water is obviously oozing out of the material being rolled in the stack, it is advisable to stop harvesting. A plastic cover should be placed over the stack and well weighted to preserve the good quality that has so far been ensiled. If there is likely to be a lot of rain over several days, strongly consider completely sealing that stack. The remaining

Benchmarking data collection

If you would like to participate in the 2016-17 Tasmanian Dairy Benchmarking Program, please contact one of the TIA Dairy Extension Officers on 6430 4953. Sam, Symon or Lesley will organise to visit and collect your data and provide you with a report for your business and a comparison with other participants in the program. You can also enter the Tasmanian Dairy Business of the Year Awards through this same process.
crop, now to be a very poor quality material due to the weather, should be stored in a separate stack/pit from the original, better quality stack.

b) **Baling**: Stop when the material continually wraps around the lower rollers or when the extra weight of the bales causes undue stress on the baler and/or wrapper. Wet and heavy bales are difficult to wrap and/or move around with small tractors. Heavy rain may affect the seal between the plastic layers, so, if possible, cart the bales to a covered area (eg. tarped area), and wrap the bales out of the rain. Wrapping bales which were baled before rain arrived and have subsequently become wet will lose minimal quality.

Mown swath receiving a lot of rain

Swear a lot and then be comforted (slightly) by the fact that this heavy rain will result in a lot of good quality regrowth.

Mown pasture laying on the ground and receiving several days’ rain will continue to decrease in quantity, quality and palatability. At the same time, the number of undesirable bacteria, moulds, fungi and yeasts in the windrows will be building up at an ever increasing rate. If possible, it may be advantageous to spread the wet material after 3-4 days on the ground, especially before it begins to become slimy and yellow, then black underneath! Do this even if drying weather is some way off. This operation may, when the grass is finally ensiled, prevent or reduce an undesirable fermentation.

When the weather clears and the top of the swath or windrow is dry of loose water, spread the material with a tedder. If the grass was well wilted before the rain dropped, it will redry reasonably quickly.

Material has been on the ground for a week. Do I still make silage or hay?

Early season grass will be initially high in energy (sugars) which is what the silage-making bacteria love and need. If a mown crop is on the ground for a week, the amount of fermentable substrate will be substantially reduced, therefore reducing the likelihood of a desirable fermentation.

However, this problem is worse with later-cut material. If there is little chance of making it as hay (and the wet ground will generally dictate this) then the only options are to:

a) Try to make silage, possibly adding an inoculant to supply extra bacteria of the right kind. See comments in Silage Additives below.

b) Consider feeding to grazing stock, but start with a small block initially until the animals learn what is going on and expect a decrease in production. At least this option guarantees that most of the material is used and reduces the chance of it becoming compost if ensiled, as may be the case if badly affected.

Silage Additives

There are several additives which may aid the fermentation process. For slightly over-wet forage which is still high in sugars, fermentation-stimulating bacterial inoculants are suitable, as is a product containing sulphur compounds + amylase. If forage has been on the ground for many days, it is probably very low in sugars. Buffered acid salts are the best bet, albeit expensive due to the high application needed. Effectiveness will depend on the degree of wilting, how much and how well the additive is incorporated, etc. so there are no guarantees on this working well, or getting all your money back. Do not pick up mud/cow manure inoculating with bad bacteria.
A hardy group of farmers attended the Dairy On PAR spring management field days in September. While the weather was not the best, there was plenty to discuss with guest speakers Frank Mickan (Agriculture Victoria), and James Hills and David McLaren (TIA).

Smarter Irrigation

At the field days, David and James outlined the checks that should be undertaken with irrigation systems NOW to make sure everything is ready to start irrigating at the right time.

It ends up very costly if irrigation systems are not started at the right time. Modelling has shown that for each day that start-up is delayed, there is a loss of 105 kg DM/ha over the season. So, if start-up is delayed by five days, the amount of pasture foregone is 0.5 tonne DM/ha. For an irrigated area of 50 ha, this is 25 tonnes of DM lost.

Irrigation systems checks

For centre pivots, you should:

- Check tyre pressure and wheel alignment
- Check drives for oil leaks, noise and drive shaft operation
- Start machine and check voltage is correct
- Wet run the machine and check centre and end pressures are as specified in the spray chart
- Check flow rate to system
- Check uniformity of application

There is a really useful document on the DairyNZ website called “DIY Irrigation Evaluation” which takes you step-by-step through some of these irrigation checks. Undertaking these checks ensures your system is ready to go, operating efficiently and applying the correct amount of water.

Starting at the right time

Apart from checking your system is ready to start when needed, you need to be able to work out the right time to start watering. A common mistake is to overestimate the amount of water the soil can hold. If you know your soil texture you can work out its water holding capacity and you are then able to calculate when to start irrigating. Table 1 shows some common soil types and the amount of readily available water held.

Table 1: Amount of readily available water in soils of various textures

<table>
<thead>
<tr>
<th>Texture</th>
<th>Readily available water (mm/cm)</th>
<th>Readily available water in 30 cm soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.3</td>
<td>9 mm</td>
</tr>
<tr>
<td>Loamy sand</td>
<td>0.5</td>
<td>15 mm</td>
</tr>
<tr>
<td>Loam</td>
<td>0.9</td>
<td>27 mm</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0.8</td>
<td>24 mm</td>
</tr>
<tr>
<td>Medium clay</td>
<td>0.6</td>
<td>18 mm</td>
</tr>
</tbody>
</table>

Adapted from Soil health for farming in Tasmania by Bill Cotching.

The majority of pasture roots occurs in the top 30 cm of soil, so to calculate the amount of soil moisture available for pasture growth, it is necessary to multiply the amount of readily available water the soil can hold by 30 cm. For example, a sandy soil can hold 0.3 mm/cm of readily available water. Multiply 0.3 mm/cm by 30 cm and we determine a sandy soil can hold 9 mm of readily available water in the root zone.

Moisture is lost from the soil and crop through evapotranspiration. If the average evapotranspiration rate is 3 mm/day, it only takes 3 days (9mm ÷ 3mm) with a sandy soil for all the readily available water to be used and the plants to suffer stress and reduced growth rates. On a clay loam soil with an evapotranspiration rate of 3 mm/day, it will take 8 days (24 mm ÷ 3 mm) to use all the readily available water. It is important to understand that the numbers in the right hand column of the table represent the maximum amount of water that can be held by the soil. Even if there is 50 mm of rain, a sandy soil will still only be able to hold 9 mm of readily available water in the top 30 cm. All the ‘excess’ water will either run off the surface or drain below the top 30 cm and be inaccessible to the pasture.

How do you use this information to work out irrigation start-up time? Basically, you just need to go back to the last significant rainfall event (where it rained more than the water holding capacity) so that you know the soil was holding the maximum amount of readily available water that it could. You then just subtract the amount of water lost through evapotranspiration each day and add in any rainfall events greater than 2 mm. Table 2 shows an example of a water budget.

The irrigator must be started in time for the whole area to be irrigated before the readily available water reaches zero. If you don’t start until the water budget reaches zero, most of the irrigated area will be experiencing stress and reduced growth rates by the time you water.

The alternative to using a water budget is to install a soil moisture measuring device. There are a whole range of these available – your irrigation supplier should be able to provide advice on the options available.
Making quality silage

In Tasmania, a large proportion of annual pasture growth occurs in spring. In order to maintain a high pasture quality for grazing cows, it is generally necessary (unless other strategies are in place) to drop paddocks out of the grazing rotation for silage and/or hay production.

If measuring pasture growth, the below example can be used as a guide to decide on the area that can be taken out of the grazing round.

The area calculated for silage production can be progressively taken out of the rotation to maintain grazing quality. If pasture growth rates increase – or decrease – the area to be cut for silage should be adjusted accordingly.

Pre-grazing covers and post-grazing residuals should be monitored closely and as soon as one or both of these starts to get above target, paddocks should be dropped from the grazing rotation.

If paddocks that are dropped out of the rotation are cut early (leafy and before seed head emergence), silage quality will be very high and paddocks cut will slot back into the next rotation.

Cutting pasture early gives the best potential for a high quality silage but the rest of the silage-making process also needs to be managed well.

Particularly, getting a fast wilt – ideally 24 hours – but certainly within 48 hours, is important. Obviously, timing mowing with good weather predictions is important for achieving this. Using a mower conditioner to mow or a tedder as soon as possible after mowing will make the pasture wilt faster. Make sure there is good communication with contractors regarding when and how much is being mowed.

Finally, silage needs to be wrapped/covered as soon as possible and it is critical that plastic is checked for holes and repaired quickly – losses due to mould growth can be huge.

There is a lot more information about making quality silage in the TopFodder “Successful Silage” manual which is available online at no cost: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/294053/Successful-silage-topfodder.pdf

Example: how to calculate the area that can be cut for silage

Cow numbers: 460
Milking area: 460
Stocking rate: 2.3 cows/ha (460 ÷ 200)
Cow requirements per hectare: 37 kg DM/ha (16 kg DM/cow x 2.3 cows/ha)
Pasture growth (measured): 70 kg DM/ha
Area needed for grazing: 53% ((37 ÷ 70) x 100)
Area that can be taken out for silage: 47% (100% - 53%) or 94 ha (200 ha x 47%)

Table 2: A water budget

<table>
<thead>
<tr>
<th>Date</th>
<th>Rainfall*</th>
<th>Evapotranspiration</th>
<th>Readily available water</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>16th Aug</td>
<td>17.0</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17th Aug</td>
<td>6.2</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18th Aug</td>
<td>4.2</td>
<td>1.6</td>
<td>24 (maximum)</td>
<td></td>
</tr>
<tr>
<td>19th Aug</td>
<td>0.2</td>
<td>1.7</td>
<td>22.3</td>
<td>Subtract 1.7</td>
</tr>
<tr>
<td>20th Aug</td>
<td>0.0</td>
<td>1.6</td>
<td>20.7</td>
<td>Subtract 1.6</td>
</tr>
<tr>
<td>21st Aug</td>
<td>0.2</td>
<td>1.1</td>
<td>19.6</td>
<td>Subtract 1.1</td>
</tr>
<tr>
<td>22nd Aug</td>
<td>2.2</td>
<td>1.2</td>
<td>18.4</td>
<td>Add 0.2 (ignore first 2 mm*) and subtract 1.2</td>
</tr>
<tr>
<td>23rd Aug</td>
<td>6.2</td>
<td>1.4</td>
<td>23.4</td>
<td>Add 6.2, subtract 1.4</td>
</tr>
<tr>
<td>24th Aug</td>
<td>0.6</td>
<td>1.9</td>
<td>21.5</td>
<td>Subtract 1.9</td>
</tr>
<tr>
<td>25th Aug</td>
<td>0.0</td>
<td>1.7</td>
<td>19.8</td>
<td>Subtract 1.7</td>
</tr>
<tr>
<td>26th Aug</td>
<td>0.0</td>
<td>1.8</td>
<td>18.0</td>
<td>Subtract 1.8</td>
</tr>
<tr>
<td>27th Aug</td>
<td>3.2</td>
<td>2.3</td>
<td>16.9</td>
<td>Add 1.2 (ignore first 2 mm) and subtract 2.3</td>
</tr>
<tr>
<td>28th Aug</td>
<td>0.0</td>
<td>1.8</td>
<td>15.1</td>
<td>Subtract 1.8</td>
</tr>
<tr>
<td>29th Aug</td>
<td>0.2</td>
<td>1.5</td>
<td>13.6</td>
<td>Subtract 1.5</td>
</tr>
<tr>
<td>30th Aug</td>
<td>1.6</td>
<td>2.4</td>
<td>11.2</td>
<td>Subtract 2.4</td>
</tr>
<tr>
<td>31st Aug</td>
<td>0.0</td>
<td>1.8</td>
<td>9.4</td>
<td>Subtract 1.8</td>
</tr>
<tr>
<td>1st Sept</td>
<td>7.5</td>
<td>No data so subtract av. 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Sept</td>
<td>0.0</td>
<td>1.0</td>
<td>6.5</td>
<td>Subtract 1</td>
</tr>
<tr>
<td>3rd Sept</td>
<td>12.8</td>
<td>1.6</td>
<td>15.7</td>
<td>Add 10.8 (ignore first 2 mm) and subtract 1.6</td>
</tr>
<tr>
<td>4th Sept</td>
<td>7.6</td>
<td>1.6</td>
<td>21.7</td>
<td>Add 7.6 and subtract 1.6</td>
</tr>
<tr>
<td>5th Sept</td>
<td>7.2</td>
<td>1.8</td>
<td>24 (maximum)</td>
<td>Add 7.2 and subtract 1.8</td>
</tr>
<tr>
<td>6th Sept</td>
<td>3.8</td>
<td>2.2</td>
<td>24 (maximum)</td>
<td>Add 3.8 and subtract 2.2</td>
</tr>
<tr>
<td>7th Sept</td>
<td>0.4</td>
<td>1.9</td>
<td>22.1</td>
<td>Subtract 1.9</td>
</tr>
<tr>
<td>8th Sept</td>
<td>7.0</td>
<td>1.6</td>
<td>24 (maximum)</td>
<td>Add 5 (ignore first 2 mm) and subtract 1.6</td>
</tr>
<tr>
<td>9th Sept</td>
<td>2.8</td>
<td>2.3</td>
<td>24 (maximum)</td>
<td>Add 2.8 and subtract 2.3</td>
</tr>
<tr>
<td>10th Sept</td>
<td>0.0</td>
<td>2.2</td>
<td>21.8</td>
<td>Subtract 2.2</td>
</tr>
<tr>
<td>11th Sept</td>
<td>3.0</td>
<td>1.2</td>
<td>21.6</td>
<td>Add 1 (ignore first 2 mm) and subtract 1.2</td>
</tr>
<tr>
<td>12th Sept</td>
<td>1.0</td>
<td>1.0</td>
<td>20.6</td>
<td>Subtract 1</td>
</tr>
<tr>
<td>13th Sept</td>
<td>10.8</td>
<td>1.9</td>
<td>24 (maximum)</td>
<td>Add 8.8 (ignore first 2 mm) and subtract 1.9</td>
</tr>
<tr>
<td>14th Sept</td>
<td>1.8</td>
<td>2.1</td>
<td>21.9</td>
<td>Subtract 2.1</td>
</tr>
<tr>
<td>15th Sept</td>
<td>2.8</td>
<td>2.8</td>
<td>21.9</td>
<td>Add 2.8 and subtract 2.8</td>
</tr>
<tr>
<td>16th Sept</td>
<td>1.0</td>
<td>2.0</td>
<td>19.9</td>
<td>Subtract 2</td>
</tr>
<tr>
<td>17th Sept</td>
<td>1.2</td>
<td>1.9</td>
<td>18.0</td>
<td>Subtract 1.9</td>
</tr>
<tr>
<td>18th Sept</td>
<td>0.0</td>
<td>1.5</td>
<td>16.5</td>
<td>Subtract 1.5</td>
</tr>
<tr>
<td>19th Sept</td>
<td>8.4</td>
<td>2.8</td>
<td>20.1</td>
<td>Add 6.4 (ignore first 2 mm) and subtract 2.8</td>
</tr>
<tr>
<td>20th Sept</td>
<td>0.2</td>
<td>1.2</td>
<td>18.9</td>
<td>Subtract 1.2</td>
</tr>
</tbody>
</table>

*The first 2 mm of a rainfall event is not counted as it is considered ineffective
What is happening at DairyTas?

Free and helpful discussion groups for farmers

Did you know that DairyTas, through funding from Dairy Australia, has been supporting 11 discussion groups across the state? These region and topic-specific groups are in addition to the TIA discussion groups that also operate in the state and are free for dairy farmers to attend.

Each of the groups has accessed a $3,000 grant to help them either start a new group, or support the activities that the group undertakes. Some groups have focused on business management topics, or have targeted a specific audience e.g. the Legendairy Women’s group.

Groups have also used the money to support tours and guest speakers. Regardless of the focus, participants have fed back that the groups are useful to their business and have helped their farm management.

DairyTas AGM and Board vacancies

DairyTas will hold its AGM on 17 November. Vacancies exist for one dairy farmer position plus one industry representative position for a maximum of two three-year terms (6 years).

DairyTas is looking for dairy farming and industry services people with a strong understanding of, and commitment to industry. They need to be able to devote some time to working with a progressive, forward-looking organisation in order to promote the interests of dairying in Tasmania. Board meetings are held every two months at varying locations around the state.

If you are interested, please contact us to get your information pack. Written applications are due to DairyTas by the close of business on Friday 6 October 2017.

Taking Stock visits part of Tactics for Tight Times

This season, DairyTas will be continuing to provide support to farmers in the form of Taking Stock. A limited number of Taking Stock visits will be available to farmers across the state. Farmers will have access to one Taking Stock visit to their farm for the season. These involve personal farm visits from a consultant to assist farmers to make sound management decisions about their business direction.

Funding available for Local Area Group Meetings

DairyTas, through Dairy Australia, are supporting dairy farming communities to gather in local groups to discuss options for support at a one-off group gathering.

These local Area Group Meetings are farmer-driven and an opportunity to get together with other farmers in your local area/community to discuss relevant issues. These meetings can take on various forms.

Farmers are encouraged to apply for up to $1,000 towards the cost of their group meeting. If approved, the costs associated with hosting the group meeting will be reimbursed to the organiser through DairyTas by submitting a claim form, evidence of the event (as listed on the application form) and accompanying invoices/receipts.

Free membership for Young Dairy Network

Are you involved in the dairy industry and aged 18-35?

The Young Dairy Network aims to back the next generation who will advance the industry with innovation and vision. The organised activities are designed to support you and your development in the industry and membership is free. We are looking for people to get involved as members.

Workforce Planning and Human Resources

Penny Williams has planned some Workforce Planning and Industrial Relations Seminars in November. These sessions will help employers to understand the current rules and regulations around employing staff. For more information, contact Penny on 0408 622 484.
Lesley Irvine, TIA

Wouldn’t it be great if you didn’t have to disbud calves each year? While there isn’t a huge selection of bulls with the polled (naturally without horns) gene, this number is increasing each year.

One of the easiest ways to view which bulls have the polled gene is to download the “Good Bulls” app. From the main screen (Photo 1), select ‘Add filter’ and then scroll down to ‘Genetic Characteristics’ (Photo 2). You can then select which genetic characteristics you would like your bulls to have.

There are two options for polled bulls:

1. **Polled carrier** – these bulls are heterozygous for the polled gene which means there is a 50% chance of the resulting calf being polled (when mated to a horned cow). The code used in Australian Breeding Values for this gene when you are reading details about individual bulls is POC.

2. **True polled** – these bulls are homozygous for the polled gene, which means there is a 100% chance the resulting calf will be polled. The code used for this gene is POS.

As the selection of bulls with poll genes is still a bit limited, you may not want to select all your bulls from only within this group – you still need to take into account other breeding requirements – but why not make a start? Select one or two bulls from this group that fit with your requirements and mate 10, 20 or 50 cows to start the journey towards a herd that is naturally polled with no need of disbudding.

A poll to get excited about!

TIA Dairy Research Facility has started this welfare-friendly, labour-saving breeding option.

And for those who don’t want to/aren’t able to download the app, just talk to your AI supplier about the options.

In the meantime (until polled dairy animals are the norm), disbudding of calves should take place as early as possible – as soon as the horn buds are detectable.

While the use of pain relief is not essential, research has shown it does reduce the stress response for 2-6 hours after disbudding.

If an anti-inflammatory is also used, this stress response is reduced for 24 hours (sometimes longer). This not only improves the welfare of the animal, but also reduces the negative impact on feed intake and growth rates.
September

28 Sep: Midlands and Southern Farmers Discussion Group, Cressy (DairyTas)

October

3 Oct: Quad Bikes, Smithton (TasTAFE)

11 or 12 Oct: Quad Bike Training, Burnie (TasTAFE)

17–18 Oct: Chainsaws, Burnie (TasTAFE)

18–19 Oct: Diploma/Certificate IV Workshop Series – Manage Risk, Deloraine (TasTAFE)

24–25 Oct: Chainsaws, Launceston (TasTAFE)

26 Oct: Board Meeting (DairyTas)

26–27 Oct: ChemCert, Launceston (TasTAFE)

31 Oct–1 Nov: Breeding Strategies and Livestock Production, King Island (TasTAFE)

Late Oct TBA: Cups on Cups off, North East (TasTAFE)

November

1 Nov: New focus farm field day (DairyTas)

1–2 Nov: ChemCert, Burnie (TasTAFE)

8 Nov: Industrial Relations Seminar, Smithton, 11am–1pm (DairyTas)

8 Nov: Industrial Relations Seminar, Dairy Plains, 6:30–8:30pm (DairyTas)

8–9 Nov: 8 Steps Program, Agritas, Smithton. Contact Nicki Hayward 0477 334 080 (No.8HR)

9 Nov: Industrial Relations Seminar, Scottsdale, 10:30am–12:30pm (DairyTas)

14–15 Nov: ChemCert, Launceston (TasTAFE)

15–16 Nov: Diploma / Certificate IV Workshop Series - Budgets and Financials, Deloraine (TasTAFE)

17 Nov: DairyTas AGM, Hagley (DairyTas)

21–22 Nov: 8 Steps Program, Scottsdale LINC. Contact Nicki Hayward 0477 334 080 (No.8HR)

21–22 Nov: Chainsaws, Burnie (TasTAFE)

24 Nov: Dairy Australia AGM, Melbourne (Dairy Australia)

29–30 Nov: 8 Steps Program, Deloraine. Contact Nicki Hayward 0477 334 080 (No.8HR)

December

5–6 Dec: ChemCert, Launceston (TasTAFE)

6 Dec: TIA Open Day @ TDRF, Elliott (TIA)

12–13 Dec: Beyond 8 Steps Program, Delorane. Contact Nicki Hayward 0477 334 080 (No.8HR)

12–13 Dec: Small Business Finance, King Island (TasTAFE)

2018

13–15 Feb: Australian Dairy Conference, Melbourne.

15 Mar: Tasmanian Dairy Conference and Dinner, Launceston CC Casino

Pasture growth rates and evapotranspiration

As part of the Dairy On PAR project, TIA is undertaking weekly pasture measurements on a number of farms around the state. These growth rates are available in an email on a weekly basis. With the start of the irrigation season approaching, the email will also include a countdown to irrigation start-up and weekly evapotranspiration rates to assist with irrigation scheduling. If you would like to receive a copy of this report, please send an email to Nathan.Bakker@utas.edu.au.

If you undertake regular farm walks/rides and would be willing to share your pasture growth rates with TIA to include in the weekly pasture growth rate update, we would love to hear from you.

Contact Lesley.Irvine@utas.edu.au

Dairy On PAR is funded by Dairy Australia and TIA.