# Trends in prefabricated timber building Welcome and introduction

## **Greg Nolan**

Centre for Sustainable Architecture with Wood, School of Architecture and Design, University of Tasmania

#### **Learning Objectives**



- Participants completing this activity will be able to understand:
  - The scope for prefabrication in design and construction and factors that influence it.
  - Trends in timber prefabrication locally and internationally.
- For architects AACA Competencies:
  - Design
  - Documentation



#### **Seminar content**



- An introduction to prefabrication.
  - Greg Nolan, CSAW
- Structural prefabrication trends in Australia
  - Phil Ladson, MultiNail

Tea and coffee break

• Prefabrication trends internationally

— Jon Shanks, CSAW — Karl Zankl,

Wuerzburg University of Applied Sciences

## This presentation



- Definition of prefabrication
- Scales of prefabrication
- Prefabrication's key aspects
- Types of fabricators in Australia.



Vertical board cladding

## **Definition: prefabrication**





 To manufacture sections or components of a building, usually in a factory or workshop, so that they can be easily transported to and rapidly assembled on site.

#### Scale of prefabricated sections



| Scale      | Description                                                                   | Example                               |
|------------|-------------------------------------------------------------------------------|---------------------------------------|
| Buildings  | A discrete enclosure.                                                         | Classroom                             |
| Components | Major sections of a building with common or similar performance requirements. | Floor, roof, wall façade.             |
| Elements   | The pieces assembled to make up a component.                                  | Trusses in a roof, joists in a floor. |
| Detail     | The pieces assembled to make up an element.                                   | A window sash.                        |

- There is often overlap, especially at the element and detail scale.
- A piece of sawn timber can be:
  - a joist in a floor (an element in a component) or
  - a part of a nail plate truss (a detail in an element).

#### **Component types**



| Component         | Description                                                                                |  |
|-------------------|--------------------------------------------------------------------------------------------|--|
| Superstructure    | The primary load-bearing frame found in most buildings.                                    |  |
| Roof              | The roof and roof structure.                                                               |  |
| Upper floors      | The upper floor surfaces and support structure.                                            |  |
| Ground floor      | The base floor and ground support structure.                                               |  |
| External walls    | The wall structure and associated cladding and external joinery such as doors and windows. |  |
| Internal fabric   | Internal non load-bearing walls, linings, architectural surfaces, and internal joinery.    |  |
| External elements | Verandas, decks and associated landscape structures.                                       |  |

• Components can be structural, architectural or envelope items.

#### Timber is a good base for prefabrication





Timber systems offer solutions that:

- Are lighter, more adaptable and easier to handle than mass materials.
- Are a safer construction method
  - without the hardness, weight and danger of high mass materials.
- Are cleaner and create less site noise and waste.
- Offer savings in other areas of the structure and the foundations.
- Provide builders with an alternative to steel and concrete.

Courtesy of Herman Kaufman



## Key aspects of prefabrication

## Key aspects of prefabrication

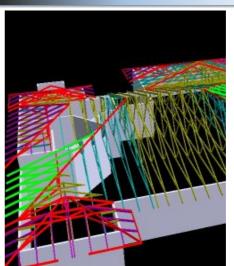


Prefabrication moves work from:

- · uncontrolled site conditions
- to controlled workshop conditions.

#### This can offer:

- Reduced exposure to risk:
  - adverse site conditions and
  - the demands of maintaining a skilled site workforce.
- Potential increases in building quality.
- Significant reduction in site construction times.




#### **Key aspects of prefabrication**



Moves detailed decisionmaking from construction to the design documentation stage.

- · This can
  - Increase the volume, cost and criticality of documentation.
  - Decrease acceptable tolerances while increasing their importance.
  - Increase demand for skilled labour and efficient equipment in the workshop.



## Key aspects of prefabrication





- It increases transportation costs.
  - Commodity products first have to be delivered to the workshop.
  - The items being transported to site are generally larger, more valuable and less robust than its constituent commodity products.

#### **Prefabrication and site construction**



#### Prefabrication thrives if:

- The savings from:
  - Lower risk.
  - More consistent quality (fewer costly mistakes).
  - Quicker building.
- Outweigh the costs of:
  - Additional documentation.
  - Workshop infrastructure and equipment.
  - More expensive transport.

#### Viable levels of prefabrication



A relationship exists between the viable prefabrication level and the project.

This is governed by:

- The conditions on the site.
  - The costs penalties incurred by access, climate, proximity of labour, etc.
- The regularity and volume of construction.



# Viable levels of prefabrication



- The prefabrication company's skill and equipment base.
- The potential to channel design information directly to production equipment.
  - This limits the additional cost of documentation and associated management.



## High-level production capacity





Courtesy of Herman Kaufman



#### **Types of fabricators in Australia**

In Australia, there are three general types of timber product fabricators.

Timber construction 1 prefabrication

## **Types of fabricators**



- Frame and truss manufacturers (F&T)
- Specialist structural fabricators
- Joiners
  - General
  - Window and door joinery



Timber construction 1

#### Scope for prefabrication Element type Australian International Superstructure elements Envelope / fabric systems Wall frames Roof and floor trusses and modules Flooring modules, such as cassette floors Structural insulated panels Cross laminated timber panels. Envelope elements & components Window and door joinery Envelope systems Appearance elements Stairs and general joinery items Specialist joinery



## Questions?



# **Greg Nolan**

Centre for Sustainable Architecture with Wood, School of Architecture and Design, University of Tasmania

