Courses & Units
Signals and Linear Systems ENG332
Introduction
The unit introduces the theory and practice of signals and linear systems and shows how transform techniques and transfer functions can be used to solve problems in several engineering fields. This unit is considered to be essential for power, electrical, computer, electronic, telecommunications and mechatronic engineering and forms the basis for many third and fourth year units, especially those in Control Theory. Harmonic analysis, signal decomposition and transforms are treated in a logical sequence showing their inter-relationship. Similarly, digital systems and transforms will be derived from sampling theory, converting analog systems and continuous transforms to equivalent digital systems, and thus show their inter-relationship. Special emphasis is placed on the use and proficient application of higher mathematics. This includes complex analysis, matrix representation and solution, and liberal use is made of linear algebra and the state space representation and solution methodology. The unit introduces the student to stochastic systems analysis and the predictability of observable phenomena. These ideas and theory are important for an understanding of renewable energy resources and their limitations, and to characterize the reliability of energy sources. Liberal use is made of the concept of an expectation value – including the differences between the definition of the expectation value on the time domain and the ensamble or space domain. Thus the student is led to an understanding of these aspects via a special emphasis on the Ergodic theorem. Special conditions leading to weak forms of the Ergodic theorem is studied with practical examples. The student will be able to design systems making use of the concepts learned, in practical and real world problems. There are three detailed written tests/examinations during the semester that assess the student’s mastery of learning outcomes.
Summary
Unit name | Signals and Linear Systems |
---|---|
Unit code | ENG332 |
Credit points | 12.5 |
College/School | College of Sciences and Engineering School of Engineering |
Discipline | Engineering |
Coordinator | Doctor Haihan Sun |
Available as an elective? | Yes |
Delivered By | University of Tasmania |
Level | Advanced |
Availability
Location | Study period | Attendance options | Available to | ||
---|---|---|---|---|---|
Hobart | Semester 1 | On-Campus | International | Domestic |
Key
- On-campus
- Off-Campus
- International students
- Domestic students
Note
Please check that your computer meets the minimum System Requirements if you are attending via Distance/Off-Campus.
Units are offered in attending mode unless otherwise indicated (that is attendance is required at the campus identified). A unit identified as offered by distance, that is there is no requirement for attendance, is identified with a nominal enrolment campus. A unit offered to both attending students and by distance from the same campus is identified as having both modes of study.
Key Dates
Study Period | Start date | Census date | WW date | End date |
---|---|---|---|---|
Semester 1 | 20/2/2023 | 21/3/2023 | 10/4/2023 | 28/5/2023 |
* The Final WW Date is the final date from which you can withdraw from the unit without academic penalty, however you will still incur a financial liability (refer to How do I withdraw from a unit? for more information).
Unit census dates currently displaying for 2023 are indicative and subject to change. Finalised census dates for 2023 will be available from the 1st October 2022. Note census date cutoff is 11.59pm AEST (AEDT during October to March).
Learning Outcomes
- Apply signal decomposition and transforms, stochastic signal properties and correlation, and the ergodic theory to practical problems.
- Design signal processing systems and network and filter responses.
- Apply fundamentals of digital signal processing using a state space representation.
- Solve problems using transform theory.
- Explain the relationship between system performance and desired system specification, and what constitutes an achievable and practical engineering design.
Field of Education | Commencing Student Contribution 1,3 | Grandfathered Student Contribution 1,3 | Approved Pathway Course Student Contribution 2,3 | Domestic Full Fee 4 |
---|---|---|---|---|
039999 | $1,037.00 | $1,037.00 | not applicable | $2,938.00 |
1 Please refer to more information on student contribution amounts.
2 Please refer to more information on eligibility and Approved Pathway courses.
3 Please refer to more information on eligibility for HECS-HELP.
4 Please refer to more information on eligibility for FEE-HELP.
If you have any questions in relation to the fees, please contact UConnect or more information is available on StudyAssist.
Please note: international students should refer to What is an indicative Fee? to get an indicative course cost.
Requisites
Prerequisites
(KME271 or KMA252) AND KME272Teaching
Teaching Pattern | 2x 2-hour Workshops per week 3x 2-hour practical session per semester |
---|---|
Assessment | Final Exam (40%)|Semester test 1 (15%)|Semester test 2 (15%)|Group project 2 (20%)|Group project 1 (10%) |
Timetable | View the lecture timetable | View the full unit timetable |
Textbooks
Required |
Required readings will be listed in the unit outline prior to the start of classes. |
Links | Booktopia textbook finder |
---|
The University reserves the right to amend or remove courses and unit availabilities, as appropriate.