Courses & Units

Power System Dynamics and Stability ENG441


The aim of this unit is to provide students expertise in the analysis of power system dynamics and stability for practical applications. The unit covers an introduction to the concept of power system stability, representation of synchronous machines and AC transmission modelling in stability studies, static and dynamic load models, steam and hydro turbines and governing systems, HVDC systems and their representation in stability studies, small-signal stability concept, eigenvalues and eigenvectors, small-signal stability of a single machine and multimachine systems, transient stability concept, simulation of power system dynamic response, direct method of transient stability analysis, voltage stability and voltage collapse, wide-area monitoring, and impact of wind and solar integration on power system dynamics.


Unit name Power System Dynamics and Stability
Unit code ENG441
Credit points 12.5
College/School College of Sciences and Engineering
School of Engineering
Discipline Engineering
Coordinator Doctor Waqas Hassan
Delivered By University of Tasmania


Location Study period Attendance options Available to
Hobart Semester 1 On-Campus International Domestic


International students
Domestic students

Please check that your computer meets the minimum System Requirements if you are attending via Distance/Off-Campus.

Units are offered in attending mode unless otherwise indicated (that is attendance is required at the campus identified). A unit identified as offered by distance, that is there is no requirement for attendance, is identified with a nominal enrolment campus. A unit offered to both attending students and by distance from the same campus is identified as having both modes of study.

Key Dates

Study Period Start date Census date WW date End date
Semester 1 20/2/2023 21/3/2023 10/4/2023 28/5/2023

* The Final WW Date is the final date from which you can withdraw from the unit without academic penalty, however you will still incur a financial liability (refer to How do I withdraw from a unit? for more information).

Unit census dates currently displaying for 2023 are indicative and subject to change. Finalised census dates for 2023 will be available from the 1st October 2022. Note census date cutoff is 11.59pm AEST (AEDT during October to March).

About Census Dates

Learning Outcomes

  • Determine small-signal stability of power systems using eigenvalues and eigenvectors
  • Evaluate power system dynamic response using appropriate commercial software
  • Determine transient stability of a power system using the equal area criterion
  • Investigate voltage stability and conditions for voltage collapse
  • Analyse the impact of renewable energy integration by simulating power system dynamics
Field of Education Commencing Student Contribution 1,3 Grandfathered Student Contribution 1,3 Approved Pathway Course Student Contribution 2,3 Domestic Full Fee 4
031301 $1,037.00 $1,037.00 not applicable $2,938.00

1 Please refer to more information on student contribution amounts.
2 Please refer to more information on eligibility and Approved Pathway courses.
3 Please refer to more information on eligibility for HECS-HELP.
4 Please refer to more information on eligibility for FEE-HELP.

If you have any questions in relation to the fees, please contact UConnect or more information is available on StudyAssist.

Please note: international students should refer to What is an indicative Fee? to get an indicative course cost.



ENG333 Power Systems 1


Teaching Pattern

2 x 2 hours lectorials weekly, 6 x 3 hours labs

AssessmentLabs (20%)|Exam (40%)|Project (40%)
TimetableView the lecture timetable | View the full unit timetable



Required readings will be listed in the unit outline prior to the start of classes.

LinksBooktopia textbook finder

The University reserves the right to amend or remove courses and unit availabilities, as appropriate.