× You are viewing an archive version of this unit.

Launceston

This unit has been discontinued.

Note:

Introduction

This unit builds on foundations laid in first year core units Mathematics I and II giving extensive treatment of some of the more advanced areas of mathematics that have applications in engineering, particularly as tools for computer-based modelling, analysis and design related to heat and fluid flow. The unit aims to present students with methods for translating real engineering problems into mathematical form and guide them in developing mathematical techniques for the solution of such problems.

The unit is split into two sections: section one will cover solving ordinary & partial differential equations using methods such as Laplace transforms, Fourier series, and the method of separation of variables; section two will cover differential and integral vector calculus methods.

Summary 2021

Unit name Calculus of Several Variables
Unit code JEE235
Credit points 12.5
Faculty/School College of Sciences and Engineering
Australian Maritime College
Discipline National Centre for Maritime Engineering and Hydrodynamics
Coordinator

Prof Kiril Tenekedjiev

Teaching staff

Prof Kiril Tenekedjiev

Level Intermediate
Available as student elective? Yes
Breadth Unit? No

Availability

Note

Please check that your computer meets the minimum System Requirements if you are attending via Distance/Off-Campus.

Units are offered in attending mode unless otherwise indicated (that is attendance is required at the campus identified). A unit identified as offered by distance, that is there is no requirement for attendance, is identified with a nominal enrolment campus. A unit offered to both attending students and by distance from the same campus is identified as having both modes of study.

Special approval is required for enrolment into TNE Program units.

TNE Program units special approval requirements.

* The Final WW Date is the final date from which you can withdraw from the unit without academic penalty, however you will still incur a financial liability (see withdrawal dates explained for more information).

About Census Dates

Learning Outcomes

ILO 1 Model engineering systems using differential equation methods, such as Laplace transforms.

ILO 2 Derive the differential equations governing physical or modelling problems, solve these equations by methods of practical importance and interpret the results.

ILO 3 Use Fourier series as a tool in solving problems that involve ordinary and partial differential equations.

ILO 4 Calculate line integrals and surface integrals and consider some of their basic engineering applications in solid mechanics, fluid flow and heat problems.

ILO 5 Use corresponding formulae of Green, Gauss and Stokes in engineering applications, as well as in theoretical problems, such as potential theory.

Fees

Requisites

Prerequisites

JEE104

Teaching

Teaching Pattern

3 hours Lectures weekly, 1 hour Tutorial weekly.

Assessment

Exam 70%, Tutorials 10%, Assignment 10%, Class test 10%

TimetableView the lecture timetable | View the full unit timetable

Textbooks

Required

Recommended

The University reserves the right to amend or remove courses and unit availabilities, as appropriate.