Reliability assessment of offshore facilities

A Risk-Based Digital-Twins Framework for Reliability Assessment of Multi-Purpose Offshore Facilities

Degree type

PhD

Closing date

29 October 2021

Campus

Launceston

Citizenship requirement

Domestic/International Onshore

About the research project

The sustainable offshore development of seafood and renewable energy production systems in Australia is crucial for the Blue Economy development. Included in these prospects for blue economy growth are multi-purpose offshore platforms/facilities (MPOP) which can be realised through co-location and/or integration of seafood and renewable energy production systems. Such co-location/integration would have several synergistic benefits, including shared resources, efficient use of ocean space, less competition amongst other user groups of marine space, reduced operational and maintenance (O&M) costs from possible shared activities and reduced impact on coastal environments and ecosystems. All these benefits can be achieved if an integrated/co-located MPOP can operate safely and reliably. However, because of different structural and operational specifications/limitations of the devices used for aquaculture and offshore energy production, the reliability assessment of the integrated/co-located systems is a challenging task.

An emerging field of research in reliability assessment of novel systems involves the use of the Digital Twins (DT) concept. The pairing of the virtual and physical worlds allows analysis of data and monitoring of systems to identify the problems before they even occur, preventing downtime. The DT utilises sensory data and physical models for replicating the structure and evaluating its reliability real-time. The concept has been adopted by the aerospace industry for years, for service-life management and optimisation of airplanes and space shuttles.

Implementing the DT framework however is not straight forward because of the different structural and operational limitations of the aquaculture and renewable energy devices integrated within an MPOP and the lack of structural monitoring guidelines. Solving this issue requires utilisation and coupling of different environmental, structural and failure models, optimal utilisation of different sensors etc. The physical models used within DT frameworks are not certain and there are different degrees of uncertainty associated with each one of them. Improper use of sensors for structural and operational monitoring also increases the uncertainty. Such uncertainties increase the risk of predictions obtained by a DT. This research intends to address the uncertainty within the DT components by means of risk-based reliability frameworks. The research project answers the following questions:

  1. What are the capabilities of the DT concept for reliability assessment of MPOPs?
  2. What are the sources of uncertainty within the models forming an MPOP DT?
  3. How to quantify the risk associated with the identified uncertainties?
  4. What is the cumulative impact of these risks on the predictions obtained by a DT framework?
  5. How is it possible to minimise and mitigate these risks?

The project contributes towards a safer and more reliable operation of MPOPs in both exposed high-energy offshore and nearshore environments.

Primary Supervisor

Meet Dr Vikram Garaniya

Funding

Applicants will be considered for a Research Training Program (RTP) scholarship or Tasmania Graduate Research Scholarship (TGRS) which, if successful, provides:

  • a living allowance stipend of $28,597 per annum (2021 rate, indexed annually) for 3.5 years
  • a relocation allowance of up to $2,000
  • a tuition fees offset covering the cost of tuition fees for up to four years (domestic applicants only)

If successful, international applicants will receive a University of Tasmania Fees Offset for up to four years.

As part of the application process you may indicate if you do not wish to be considered for scholarship funding.

Eligibility

The project is open to domestic (Australian and New Zealand) and international applicants who are already in Australia (onshore) at the time of submitting their application.

Due to current Australian COVID-19 travel restrictions the University cannot accept applications from international applicants who are currently overseas.

Applicants should review the Higher Degree by Research minimum entry requirements.

Applicants need to have completed one of the following degrees in Mechanical, Civil, or Maritime Engineering:

  • Australian honours degree with a First Class or 2A Honours or internationally equivalent degree
  • Masters by research degree
  • Masters by coursework degree, with at least 25% research

Selection Criteria

The project is competitively assessed and awarded.  Selection is based on academic merit and suitability to the project as determined by the College.

Additional essential selection criteria specific to this project:

  • The degree must be undertaken on a full-time basis

Additional desirable selection criteria specific to this project:

  • In-depth understanding of Hydrodynamics and Maritime Engineering
  • Solid knowledge of materials science
  • Proficiency in a programming language (e.g. MATLAB)
  • Previous experience in statistical/probabilistic modelling

Application process

There is a three-step application process:

  1. Select the project, and check you meet the eligibility and selection criteria;
  2. Contact the Primary Supervisor, Dr Vikram Garaniya, if you have any questions about the project; and
  3. Click here to submit an application by the closing date listed above.
    • Copy and paste the title of the project from this advertisement into your application. If you don’t correctly do this your application may be rejected.
    • As part of your application you will be required to submit a covering letter, a CV including contact details of two referees and your project research proposal.

Following the application closing date applications will be assessed within the College. Applicants should expect to receive notification of the outcome by email.

Apply now Explore other projects

Why the University of Tasmania?

Worldwide reputation for research excellence

Quality supervision and support

Tasmania offers a unique study lifestyle experience