Dynamic Structural Loads and Motions Response of High-Speed Wave Piercing Catamarans

Closing Date

31 December 2022*

Applicants should contact the primary supervisor, and submit their Expression of Interest (EOI) and Application as soon as possible.

*unless filled earlier

The Research Project

Hobart based shipbuilder, INCAT, builds some of the world's largest and fastest high speed aluminium catamaran ferries. Critical to the success of INCAT's vessels has been their ability to operate at high speed in heavy seas, and INCAT's position as worldwide leaders in their market niche has been assisted over more than two decades by ongoing collaborative research with the University of Tasmania's School of Engineering. A long term goal is to optimise the ship structure, minimising weight without compromising integrity at critical locations. Past recent research in this area has sought to quantify the loads exerted during a slam (severe wave impact) event. Structural vibrations following a slam (known as "whipping") are known to significantly modify the internal forces as determined by a quasi static analysis, and their effect has been partially quantified through testing of a 2.5m hydroelastic model, full scale strain measurements, and dynamic finite element analysis. The current project aims to extend this work by relating the asymmetric slams and bending moments to the asymmetric design loads within the superstructure connecting the two hulls (referred to as "pitch connecting moment" and "split loads") whilst further quantifying the motions response in oblique sea directions. This has the capacity to influence international design codes and to provide a more rational framework for the determination of design loads in similar ships worldwide.


The following eligibility criteria apply to this project:

  • The project is open to Australian (domestic) and International candidates.
  • The PhD must be undertaken on a full-time basis
  • Applicants must already have been awarded a first class Honours degree or hold equivalent qualifications or relevant and substantial research experience in an appropriate sector
  • Applicants must be able to demonstrate strong research and analytical skills
  • Applicants must meet English requirements, or be able to do so before commencement

Candidates from a variety of disciplinary backgrounds are encouraged to apply. Knowledge and skills that will be ranked highly include:

  • Experience in shipping industry
  • Model testing experience in towing tanks or model test basins
  • Marine engineering or naval architecture academic background
  • Experience in use of Computational Fluid Mechanics and/or Finite Element Analysis

More Information

Please contact Dr Jason Lavroff for more information.