Degree type
PhD
Closing date
1 July 2023
Campus
Hobart
Citizenship requirement
Domestic / International
Scholarship
$36,161pa for 3.5 years
About the research project
This project is part of the new ARC Industrial Transformation Training Centre in Energy Technologies for Future Grids (ARC Future Grids ITTC). The ARC Future Grids ITTC is a 5 year, $8.5M investment program, including $5M from the Australian Research Council (ARC), designed to support the transition of Australia’s power and energy industry to a more sustainable, competitive and resilient position based on the development of human intellectual capital through training a new generation of innovators while simultaneously fostering an R&D culture within the electricity sector to leverage new skills for advancing Australia’s transition to a clean energy future.
Led by the University of Wollongong, the ARC Future Grids ITTC brings together 6 Universities (The University of New South Wales, The University of Queensland, University of Tasmania, Deakin University, and Curtin University) and 14 industry partners (CSIRO, Hydro Tasmania, TasNetworks, Powerlink, ZECO Energy, GHD, ACEN Australia, TPS Energy, Shoalhaven Water, Ingeteam Australia, Abel Energy, 123V, Essential Energy, and The Australian Power Institute) across five Australian states to deliver the next generation of industry leaders and specialists in future grid technologies to ensure Australia can smoothly manage the transition required in decarbonising its electricity sector. More information about the ITTC is at https://www.uow.edu.au/engineering-information-sciences/research/arc-training-centre-in-energy-technologies-for-future-grids/. The ARC Future Grids Training Centre is hosting a major event – 2023 IEEE International Conference in Energy Technologies for Future Grids (IEEE ETFG 2023) to be held at Wollongong, Australia on 3 – 6 December 2023 (https://attend.ieee.org/etfg-2023/).
This research project will explore the impact of variable outputs of renewable energy (RE) systems (solar and wind) combined with the ramp-rate constraints of thermal electricity generators on the stability of power grids. The project will also consider various storage technologies, which have great potential for smoothing supply from RE sources and to ensure it matches demand. While battery storage technologies can begin discharging power very quickly, fuel cells need time to warm-up and ramp-up their output. Furthermore, when electricity demand is low, the ramping down of demand needs to match with the ramping up of charging rates to store energy for later use in pumped hydro, H2 and battery energy storage facilities. This project will develop a coordinated algorithm for ramp-rate control of H2/battery/pumped storage for quickly adjusting to small changes in demand or supply. A model predictive control (MPC) will be designed to appropriately manage the ramp rates for different storage systems.
Primary Supervisor
Meet Professor Michael NegnevitskyFunding
The successful applicant will receive a scholarship which provides:
- a living allowance stipend of $36,161 per annum (2023 rate, indexed annually) for 3.5 years
- a relocation allowance of up to $2,000
- a tuition fees offset covering the cost of tuition fees for up to four years (domestic applicants only)
If successful, international applicants will receive a University of Tasmania Fees Offset for up to four years.
As part of the application process you may indicate if you do not wish to be considered for scholarship funding.
Eligibility
Applicants should review the Higher Degree by Research minimum entry requirements.
Ensure your eligibility for the scholarship round by referring to our Key Dates.
Additional eligibility criteria specific to this project/scholarship:
- Applicants must be able to undertake the project on-campus
Selection Criteria
The project is competitively assessed and awarded. Selection is based on academic merit and suitability to the project as determined by the College.
Application process
- Select your project, and check that you meet the eligibility and selection criteria, including citizenship;
- Contact Professor Michael Negnevitsky to discuss your suitability and the project's requirements; and
- In your application:
- Copy and paste the title of the project from this advertisement into your application. If you don’t correctly do this your application may be rejected.
- Submit a signed supervisory support form, a CV including contact details of 2 referees and your project research proposal.
- Apply prior to 1 July 2023.
Full details of the application process can be found under the 'How to apply' section of the Research Degrees website.
Following the closing date applications will be assessed within the College. Applicants should expect to receive notification of the outcome by email by the advertised outcome date.
Apply now Explore other projects