Courses & Units

Partial Differential Equations, Applications and Methods 3 KMA354


Partial differential equations (PDEs) are arise in many areas of applied mathematics; whenever a problem changes continuously in space and in time as, for example, in fluid flow or a description of the spread of a virus, PDEs are inevitably required to describe the system. In general PDEs are very hard to solve analytically, but there are a number of equations that recur often and for which techniques of solution have been found. In this unit we discuss several of these, and indicate the flavours of PDEs that occur fin applied mathematics, physics, biological science, commerce, and engineering. Topics discussed include: First-order PDEs: the linear wave equation, method of characteristics, traffic flow models, wave breaking, and shocks. Second-order PDEs: Classification of PDEs and characteristic curves; parabolic, elliptic, and hyperbolic equations; initial and boundary value problems; separation of variables techniques; D'Alembert's solution; orthogonal functions and Sturm-Liouville theory; fundamental solutions and Green's functions


Unit name Partial Differential Equations, Applications and Methods 3
Unit code KMA354
Credit points 12.5
College/School College of Sciences and Engineering
School of Natural Sciences
Discipline Mathematics
Coordinator Professor Andrew Bassom
Available as an elective? Yes
Delivered By University of Tasmania
Level Advanced


Location Study period Attendance options Available to
Hobart Semester 2 On-Campus International Domestic


International students
Domestic students

Please check that your computer meets the minimum System Requirements if you are attending via Distance/Off-Campus.

Units are offered in attending mode unless otherwise indicated (that is attendance is required at the campus identified). A unit identified as offered by distance, that is there is no requirement for attendance, is identified with a nominal enrolment campus. A unit offered to both attending students and by distance from the same campus is identified as having both modes of study.

Key Dates

Study Period Start date Census date WW date End date
Semester 2 22/7/2024 16/8/2024 9/9/2024 27/10/2024

* The Final WW Date is the final date from which you can withdraw from the unit without academic penalty, however you will still incur a financial liability (refer to How do I withdraw from a unit? for more information).

Unit census dates currently displaying for 2024 are indicative and subject to change. Finalised census dates for 2024 will be available from the 1st October 2023. Note census date cutoff is 11.59pm AEST (AEDT during October to March).

About Census Dates

Learning Outcomes

  • Explain the nature and classification of linear, semi-linear, quasi-linear homogeneous or inhomogeneous, elliptic, parabolic or hyperbolic boundary and initial value problems.
  • Use appropriate solution techniques to solve first and second order partial differential equations
  • Learn how to adapt and refine the various standard solution techniques to enable solution of more intricate types of problem
  • Clearly communicate and present findings in written form using appropriate mathematical terminology combined with good explanation

Fee Information

The 2024 Commonwealth Supported Place (CSP) rates are still being finalised by the Government and we will update the domestic fee information as soon as we have more details.



KMA252 Calculus and Applications 2 OR KME271 Engineering Mathematics


Teaching Pattern

3 x 1-hr lectures, 1 x 1-hr tutorial weekly

AssessmentMid semester test (20%)|5 fortnightly assignments (40%)|Final exam (40%)
TimetableView the lecture timetable | View the full unit timetable



Required readings will be listed in the unit outline prior to the start of classes.

LinksBooktopia textbook finder

The University reserves the right to amend or remove courses and unit availabilities, as appropriate.